The mitochondrion is a dynamic membrane-bound organelle that undergoes fusion and division. The balance between these opposing events, which occur in a coordinated manner, is a key determinant of organelle size, number, and shape. Mitochondrial fusion and division are mediated by conserved dynamin-related GTPases including Mfn (mammals)/Fzo1p (yeast) for fusion and Drp1 (mammals)/Dnm1p (yeast) for division. Abnormalities in mitochondrial fusion and division are associated with many neurodegenerative diseases such as Charcot-Marie-Tooth neuropathy, dominant optic atrophy, Alzheimer's disease, Huntington's disease, and Parkinson's disease. Many of these diseases affect postmitotic neurons, which contain mitochondria along their long axons and branched dendrites. Understanding the pathogenesis of these diseases requires a deeper knowledge of the molecular mechanisms that mediate and coordinate mitochondrial fusion and division as well as the physiological functions of these events. The proposed research will uncover how mitochondria fuse (Aim 1), how mitochondrial fusion and mitochondrial division are coordinated (Aim 2), and how mitochondrial division controls mitochondrial distribution in postmitotic neurons (Aim 3). To study the molecular mechanisms underlying mitochondrial fusion in Aim 1, we have purified and biochemically characterized two yeast proteins that are required for mitochondrial fusion- Fzo1p GTPase and the Fzo1p- binding protein Ugo1p. Using these proteins, we have developed assays for GTP binding, GTP hydrolysis, and GTP-dependent membrane fusion. These novel assays will allow us to dissect the functions of Fzo1p GTPase and Ugo1p in mitochondrial fusion.
In Aim 2, we will determine how mitochondrial fusion and division are coordinated. We have shown that the loss of Drp1 reduces Mfn1 and Mfn2 levels in Drp1-null mouse embryonic fibroblasts. We will determine how changes in Drp1 levels are translated into regulation of Mfn levels and mitochondrial fusion.
In Aim 3, we will determine the physiological roles of mitochondrial division in neurons by deleting Drp1 from postmitotic neurons using the Cre-loxP system in mice. Preliminary data show that Drp1 loss induces alterations in mitochondrial distribution and neurodegeneration. We will determine how mitochondrial division controls organelle morphology and distribution in postmitotic neurons. Successful completion of the proposed studies will provide mechanistic insights into mitochondrial fusion, the coordination mechanism that balances mitochondrial fusion and division, and the physiological role of mitochondrial division in neurons.

Public Health Relevance

Abnormalities in mitochondrial fusion and division are associated with many neurological disorders. To gain a better understanding of the pathogenesis of these diseases, we will investigate the molecular mechanisms and physiological functions of mitochondrial fusion and division.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM089853-05
Application #
8669992
Study Section
Membrane Biology and Protein Processing (MBPP)
Program Officer
Anderson, Vernon
Project Start
2010-08-01
Project End
2015-05-31
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
5
Fiscal Year
2014
Total Cost
$554,447
Indirect Cost
$197,979
Name
Johns Hopkins University
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Nguyen, H-N; Yang Jr, J-M; Rahdar, M et al. (2015) A new class of cancer-associated PTEN mutations defined by membrane translocation defects. Oncogene 34:3737-43
Richter, Viviane; Palmer, Catherine S; Osellame, Laura D et al. (2014) Structural and functional analysis of MiD51, a dynamin receptor required for mitochondrial fission. J Cell Biol 204:477-86
Tamura, Yasushi; Sesaki, Hiromi; Endo, Toshiya (2014) Phospholipid transport via mitochondria. Traffic 15:933-45
Nguyen, H N; Afkari, Y; Senoo, H et al. (2014) Mechanism of human PTEN localization revealed by heterologous expression in Dictyostelium. Oncogene 33:5688-96
Guo, Xing; Sesaki, Hiromi; Qi, Xin (2014) Drp1 stabilizes p53 on the mitochondria to trigger necrosis under oxidative stress conditions in vitro and in vivo. Biochem J 461:137-46
Adachi, Yoshihiro; Sesaki, Hiromi (2014) Cyclin C: an inducer of mitochondrial division hidden in the nucleus. Dev Cell 28:112-4
Macdonald, Patrick J; Stepanyants, Natalia; Mehrotra, Niharika et al. (2014) A dimeric equilibrium intermediate nucleates Drp1 reassembly on mitochondrial membranes for fission. Mol Biol Cell 25:1905-15
Bannwarth, Sylvie; Ait-El-Mkadem, Samira; Chaussenot, Annabelle et al. (2014) A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain 137:2329-45
Clerc, P; Ge, S X; Hwang, H et al. (2014) Drp1 is dispensable for apoptotic cytochrome c release in primed MCF10A and fibroblast cells but affects Bcl-2 antagonist-induced respiratory changes. Br J Pharmacol 171:1988-99
Nguyen, Hoai-Nghia; Yang, Jr-Ming; Afkari, Yashar et al. (2014) Engineering ePTEN, an enhanced PTEN with increased tumor suppressor activities. Proc Natl Acad Sci U S A 111:E2684-93

Showing the most recent 10 out of 22 publications