Muscle protein and adipose catabolism after burn or other life-threatening injury is likely an acute, adaptive response to preserve organ function and promote survival. However, persistent cachexia in the convalescent phase is pathological in itself. Hypermetabolism and catabolism of skeletal muscle mass for up to 2 years after burn injury renders patients vulnerable to injury and infection, retards wound healing, reduces overall function and diminishes quality of life. Myostatin is a skeletal muscle-specific member of the Transforming Growth Factor- 2 superfamily and a potent, tonic muscle growth inhibitor .Our long term goal is to define the key regulatory pathways mediating muscle wasting after burn injury for the purpose of developing therapeutics. The objective of this application is to determine the role of the myostatin signaling pathway in muscle wasting after burn injury. Our hypothesis is that myostatin and related ligands promote muscle wasting after burn injury, and that altering myostatin family signaling after burn will change burn survival, muscle mass and function. In the acute post-burn period, myostatin signaling and muscle wasting may facilitate survival. In the longer term, myostatin action and muscle wasting becomes maladaptive, reducing function and increasing vulnerability. We base this hypothesis on considerable preliminary data. We developed a mouse model of burn injury that causes long- term hyperinflammation and catabolism despite hyperphagia. Myostatin family signaling was increased in skeletal muscle after burn. Paradoxically, myostatin null mice exhibited enhanced wasting but also increased survival after burn. Administration of a myostatin inhibitor reduced muscle loss after burn injury. However, abolishing signaling from all myostatin-family ligands using a dominant negative ACVR2B transgenic resulted in 100% mortality after burn injury. These data indicate that myostatin family signaling plays an important, temporally regulated role in muscle size control after burn-injury. To study myostatin in burn, we have assembled a highly interactive, multidisciplinary team. The PI is a molecular biologist and expert in muscle wasting and the co-investigators are the world-leader in myostatin research, a highly accomplished academic surgeon-scientist, and the director of one of the country's largest and busiest burn centers. Each is necessary for the ultimate translation of these findings to therapeutics. Together we will determine the role of myostatin and myostatin-related ligand activity in burn-induced muscle wasting;determine the role of the myostatin family receptors ACVR2 and ACVR2B in burn-induced muscle wasting;and determine the role of SMAD2 activity in burn-induced muscle wasting.

Public Health Relevance

The studies will result in new insights into the molecular pathways by which myostatin and related ligands regulate muscle mass in normal physiology and in burn wasting. They are essential pre-clinical studies for determining the potential clinical benefit of modulating myostatin for increasing survival and function after burn injury.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM092758-05
Application #
8472496
Study Section
Surgery, Anesthesiology and Trauma Study Section (SAT)
Program Officer
Somers, Scott D
Project Start
2010-08-01
Project End
2015-05-31
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
5
Fiscal Year
2013
Total Cost
$281,074
Indirect Cost
$85,227
Name
Thomas Jefferson University
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
053284659
City
Philadelphia
State
PA
Country
United States
Zip Code
19107
Yoshimatsu, Yasuhiro; Lee, Yulia G; Akatsu, Yuichi et al. (2013) Bone morphogenetic protein-9 inhibits lymphatic vessel formation via activin receptor-like kinase 1 during development and cancer progression. Proc Natl Acad Sci U S A 110:18940-5
Rahman, Atiq; Assifi, M Mura; Pedroso, Felipe E et al. (2012) Is resection equivalent to transplantation for early cirrhotic patients with hepatocellular carcinoma? A meta-analysis. J Gastrointest Surg 16:1897-909
Fei, Dennis Liang; Sanchez-Mejias, Avencia; Wang, Zhiqiang et al. (2012) Hedgehog signaling regulates bladder cancer growth and tumorigenicity. Cancer Res 72:4449-58
Saeed, Ali M; Toonkel, Rebecca; Glassberg, Marilyn K et al. (2012) The influence of Hispanic ethnicity on nonsmall cell lung cancer histology and patient survival: an analysis of the Survival, Epidemiology, and End Results database. Cancer 118:4495-501
Pedroso, Felipe E; Raut, Chandrajit P; Xiao, Hong et al. (2012) Has the survival rate for surgically resected gastric gastrointestinal stromal tumors improved in the tyrosine kinase inhibitor era? Ann Surg Oncol 19:1748-58
Guido, Carmela; Whitaker-Menezes, Diana; Lin, Zhao et al. (2012) Mitochondrial fission induces glycolytic reprogramming in cancer-associated myofibroblasts, driving stromal lactate production, and early tumor growth. Oncotarget 3:798-810
Bonetto, Andrea; Aydogdu, Tufan; Jin, Xiaoling et al. (2012) JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia. Am J Physiol Endocrinol Metab 303:E410-21
Ricard, Nicolas; Ciais, Delphine; Levet, Sandrine et al. (2012) BMP9 and BMP10 are critical for postnatal retinal vascular remodeling. Blood 119:6162-71
Wang, Xiao; Pickrell, Alicia M; Zimmers, Teresa A et al. (2012) Increase in muscle mitochondrial biogenesis does not prevent muscle loss but increased tumor size in a mouse model of acute cancer-induced cachexia. PLoS One 7:e33426
Pedroso, Felipe E; Spalding, Paul B; Cheung, Michael C et al. (2012) Inflammation, organomegaly, and muscle wasting despite hyperphagia in a mouse model of burn cachexia. J Cachexia Sarcopenia Muscle 3:199-211

Showing the most recent 10 out of 17 publications