The signaling mechanisms that regulate cell migration are not well understood despite its importance in numerous biological and pathological processes, including embryogenesis, the inflammatory response, tissue repair and regeneration, cancer, arthritis, atherosclerosis, osteoporosis, and congenital developmental brain defects. An emerging concept is that molecules, which integrate signaling components to coordinately regulate processes underlying migration, such as actin reorganization, adhesion assembly and disassembly (turnover), and the establishment of polarity, are critical for this process. We hypothesize that the multi-domain containing protein, Asef2, functions in this capacity by integrating critical signaling components of these processes to regulate cell migration. Our preliminary work has lead to working hypotheses and the objective of this proposal is to rigorously test these hypotheses as outlined in the specific aims.
Specific Aim I will test the hypothesis that Asef2 is a critical regulator of migration through its ability to integrate molecular signals, which are important to this process. We will determine the domains that mediate this function of Asef2 to gain insight into the molecular mechanisms by which it regulates cell migration.
In Specific Aim II, we will test the hypothesis that Asef2 brings together kinases, such as Akt, and Rho family GTPase signaling to modulate cell migration. In this aim, we will use expression constructs, mutant based strategies, pharmacological inhibitors, and siRNA studies to test this hypothesis. Our working model is that Asef2 signaling coordinately regulates the activities of kinases and Rho GTPases to stimulate the rapid turnover of leading edge adhesions, which leads to enhanced cell migration.
Specific Aim III will determine if Asef2 signaling components, such as Akt and other kinase effectors, regulate the turnover of leading edge adhesions. In this aim, we will test our hypothesis by using new quantitative assays that we developed to study adhesion turnover. The studies outlined in this proposal will lead to a greater understanding of the signaling mechanisms by which Asef2 regulates cell migration.

Public Health Relevance

Cell migration is central to many biological and pathological processes, such as cancer, arthritis, atherosclerosis, and congenital brain defects. Understanding the molecules that regulate migration will lead to new therapeutic approaches to treating these disorders. The goal of this proposal is to identify molecules that are critical regulators of cell migration.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
1R01GM092914-01
Application #
7863648
Study Section
Molecular and Integrative Signal Transduction Study Section (MIST)
Program Officer
Gindhart, Joseph G
Project Start
2010-09-30
Project End
2014-08-31
Budget Start
2010-09-30
Budget End
2011-08-31
Support Year
1
Fiscal Year
2010
Total Cost
$302,605
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Yang, Jie; Cumberbatch, Derrick; Centanni, Samuel et al. (2016) Coupling optogenetic stimulation with NanoLuc-based luminescence (BRET) Ca++ sensing. Nat Commun 7:13268
Ao, Mingfang; Brewer, Bryson M; Yang, Lijie et al. (2015) Stretching fibroblasts remodels fibronectin and alters cancer cell migration. Sci Rep 5:8334
Evans, J Corey; Robinson, Cristina M; Shi, Mingjian et al. (2015) The guanine nucleotide exchange factor (GEF) Asef2 promotes dendritic spine formation via Rac activation and spinophilin-dependent targeting. J Biol Chem 290:10295-308
Broussard, Joshua A; Diggins, Nicole L; Hummel, Stephen et al. (2015) Automated analysis of cell-matrix adhesions in 2D and 3D environments. Sci Rep 5:8124
Jean, Léolène; Yang, Lijie; Majumdar, Devi et al. (2014) The Rho family GEF Asef2 regulates cell migration in three dimensional (3D) collagen matrices through myosin II. Cell Adh Migr 8:460-7
Evans, J Corey; Hines, Kelly M; Forsythe, Jay G et al. (2014) Phosphorylation of serine 106 in Asef2 regulates cell migration and adhesion turnover. J Proteome Res 13:3303-13
Brewer, Bryson M; Shi, Mingjian; Edd, Jon F et al. (2014) A microfluidic cell co-culture platform with a liquid fluorocarbon separator. Biomed Microdevices 16:311-23
Jean, Léolène; Majumdar, Devi; Shi, Mingjian et al. (2013) Activation of Rac by Asef2 promotes myosin II-dependent contractility to inhibit cell migration on type I collagen. J Cell Sci 126:5585-97
Broussard, Joshua A; Rappaz, Benjamin; Webb, Donna J et al. (2013) Fluorescence resonance energy transfer microscopy as demonstrated by measuring the activation of the serine/threonine kinase Akt. Nat Protoc 8:265-81
Lin, Wan-Hsin; Hurley, Joshua T; Raines, Alexander N et al. (2013) Myosin X and its motorless isoform differentially modulate dendritic spine development by regulating trafficking and retention of vasodilator-stimulated phosphoprotein. J Cell Sci 126:4756-68

Showing the most recent 10 out of 17 publications