Oxidative stress and mitochondrial dysfunction are centrally involved in the etiology of several diseases and in the normal process of aging. The protein DJ-1 is an oxidative stress response protein whose absence or dysregulation has been implicated in parkinsonism, cancer, and stroke. DJ-1 can robustly protect cells against multiple forms of oxidative stress and thereby confer protection against degeneration that can lead to disease. The molecular mechanism(s) of DJ-1's action, however, remains unclear. DJ-1 contains a functionally essential cysteine residue whose oxidation is hypothesized to regulate its cytoprotective function. We will investigate the mechanism by which DJ-1 senses and responds to oxidative stress by accomplishing three specific aims.
The first aim will investigate the role of DJ-1 cysteine oxidation in the protection against oxidative stress in the Drosophila animal model system. We will combine X-ray crystallography, biochemistry, and Drosophila genetics to establish a powerful animal model for the redox regulation of DJ-1 function.
The second aim will determine the structure-function relationships for an established mRNA binding activity of DJ-1. The results will be used to test the hypothesis that conserved structural features near the oxidized cysteine integrate the RNA binding and redox sensing functions of DJ-1.
The third aim will use a prokaryotic model system to investigate the evolutionarily conserved mechanism of DJ-1 protective function. The results will be used to test existing hypotheses about the conservation of regulatory cysteine oxidation in DJ-1 function as well as discover new functions for DJ-1. In total, the proposed research will provide a comprehensive molecular basis for understanding the oxidative regulation and pathogenic disruption of DJ-1 function. Ultimately, the results of this research will be used to design a new generation of therapeutics that enhance the protective function of DJ-1 in vulnerable cell types.

Public Health Relevance

Oxidative stress and mitochondrial dysfunction are centrally involved in several human diseases. Major recent advances have identified DJ-1 as a protein that confers robust protection against oxidative stress. The precise biochemical function of DJ-1, however, remains uncertain. The long-term goal of this proposal is to determine the biochemical functions of DJ-1 that confer protection against oxidative stress and with the goal of developing therapies that improve the protective function of DJ-1.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Neural Oxidative Metabolism and Death Study Section (NOMD)
Program Officer
Anderson, Vernon
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Nebraska Lincoln
Schools of Earth Sciences/Natur
United States
Zip Code
Prahlad, Janani; Hauser, David N; Milkovic, Nicole M et al. (2014) Use of cysteine-reactive cross-linkers to probe conformational flexibility of human DJ-1 demonstrates that Glu18 mutations are dimers. J Neurochem 130:839-53
Wan, Qun; Kovalevsky, Andrey Y; Wilson, Mark A et al. (2014) Preliminary joint X-ray and neutron protein crystallographic studies of ecDHFR complexed with folate and NADP+. Acta Crystallogr F Struct Biol Commun 70:814-8
Hasim, Sahar; Hussin, Nur Ahmad; Alomar, Fadhel et al. (2014) A glutathione-independent glyoxalase of the DJ-1 superfamily plays an important role in managing metabolically generated methylglyoxal in Candida albicans. J Biol Chem 289:1662-74
Wilson, Mark A (2014) Metabolic role for yeast DJ-1 superfamily proteins. Proc Natl Acad Sci U S A 111:6858-9
Keedy, Daniel A; van den Bedem, Henry; Sivak, David A et al. (2014) Crystal cryocooling distorts conformational heterogeneity in a model Michaelis complex of DHFR. Structure 22:899-910
Furt, Fabienne; Allen, William J; Widhalm, Joshua R et al. (2013) Functional convergence of structurally distinct thioesterases from cyanobacteria and plants involved in phylloquinone biosynthesis. Acta Crystallogr D Biol Crystallogr 69:1876-88
Lin, Jiusheng; Prahlad, Janani; Wilson, Mark A (2012) Conservation of oxidative protein stabilization in an insect homologue of parkinsonism-associated protein DJ-1. Biochemistry 51:3799-807
Lin, Jiusheng; Nazarenus, Tara J; Frey, Jeanine L et al. (2011) A plant DJ-1 homolog is essential for Arabidopsis thaliana chloroplast development. PLoS One 6:e23731
Wilson, Mark A (2011) The role of cysteine oxidation in DJ-1 function and dysfunction. Antioxid Redox Signal 15:111-22
Lin, Jiusheng; Wilson, Mark A (2011) Escherichia coli thioredoxin-like protein YbbN contains an atypical tetratricopeptide repeat motif and is a negative regulator of GroEL. J Biol Chem 286:19459-69

Showing the most recent 10 out of 11 publications