Thinking, memory, and motions rely on fast and accurate chemical transmission between neurons, which is mediated by a delicate calcium-triggered membrane fusion process. Malfunctions in this process cause various mental disorders and neurodegenerative diseases. Decades of effort has led to the discovery of highly conserved core machinery that generally drive membrane fusion (SNAREs, or soluble N-ethylmaleimide-sensitive factor attachment protein receptors), and key regulatory proteins that specifically control the synaptic fusion. Recently, major advances have been made that enables the reconstitution of the calcium-dependent membrane fusion in vitro. Nevertheless, this fusion is slow compared with that observed in vivo and the underlying regulatory mechanisms are in debate. As specialized engines for membrane fusion, SNAREs are believed to generate significant force that draws the membranes to close proximity for fusion. Strikingly, the force is produced by progressive folding and assembly of a cognate pair of SNAREs like a zipper. This zippering mechanism also contributes to the specificity of membrane fusion. However, in the tug-of-war between SNAREs and membranes, force may also have profound effects on SNARE assembly and its regulation, which has largely been neglected. Structural and functional studies of SNAREs are facilitated by using the proteins isolated from their membrane environments. But due to lack of their force load, the SNAREs often assemble themselves in an irregular manner that does not correspond to fusion. We hypothesize that force is an indispensible component for functional SNARE assembly and regulation. It can promote SNARE assembly in a correct pathway for fusion and facilitate its regulation. To test this hypothesis, we will provide single SNARE complexes with a controllable force load and detect their functional folding/assembly processes in real time. Using high-resolution optical tweezer force microscopy, we will pinpoint the folding/assembly reaction of these SNAREs at an unprecedented spatiotemporal resolution, molecule-by-molecule and step-by-step. We will measure the accompanying force and energy generation and examine the effects of the opposing force and regulatory proteins upon the assembly process. The novel approach will allow us to directly test the predominant force model for SNARE function. Our research will provide a foundation for understanding the molecular basis of membrane fusion and its regulation and help guide the development of better medicines for a variety of membrane-trafficking-related diseases.

Public Health Relevance

SNAREs, or soluble N-ethylmaleimide-sensitive factor attachment protein receptors, are the engines for membrane fusion. The current model for SNARE function suggests that these proteins generate forces to drive the fusion through an unusual protein zippering mechanism. Using high-resolution optical tweezers, we plan to directly measure the force produced by a single SNARE complex and pinpoint its detailed zippering kinetics at unprecedented resolution. Our research will provide an ultimate test of the model for SNARE function and a foundation to understand various membrane trafficking processes widely involved in human diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM093341-04
Application #
8501546
Study Section
Macromolecular Structure and Function B Study Section (MSFB)
Program Officer
Ainsztein, Alexandra M
Project Start
2010-07-01
Project End
2015-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
4
Fiscal Year
2013
Total Cost
$308,315
Indirect Cost
$122,022
Name
Yale University
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
Zhang, Xinming; Rebane, Aleksander A; Ma, Lu et al. (2016) Stability, folding dynamics, and long-range conformational transition of the synaptic t-SNARE complex. Proc Natl Acad Sci U S A 113:E8031-E8040
Zhang, Yongli; Jiao, Junyi; Rebane, Aleksander A (2016) Hidden Markov Modeling with Detailed Balance and Its Application to Single Protein Folding. Biophys J 111:2110-2124
Clapier, Cedric R; Kasten, Margaret M; Parnell, Timothy J et al. (2016) Regulation of DNA Translocation Efficiency within the Chromatin Remodeler RSC/Sth1 Potentiates Nucleosome Sliding and Ejection. Mol Cell 62:453-61
Ma, Lu; Kang, Yuhao; Jiao, Junyi et al. (2016) α-SNAP Enhances SNARE Zippering by Stabilizing the SNARE Four-Helix Bundle. Cell Rep 15:531-9
Rebane, Aleksander A; Ma, Lu; Zhang, Yongli (2016) Structure-Based Derivation of Protein Folding Intermediates and Energies from Optical Tweezers. Biophys J 110:441-54
Jiao, Junyi; Rebane, Aleksander A; Ma, Lu et al. (2015) Kinetically coupled folding of a single HIV-1 glycoprotein 41 complex in viral membrane fusion and inhibition. Proc Natl Acad Sci U S A 112:E2855-64
Ma, Lu; Rebane, Aleksander A; Yang, Guangcan et al. (2015) Munc18-1-regulated stage-wise SNARE assembly underlying synaptic exocytosis. Elife 4:
Zorman, Sylvain; Rebane, Aleksander A; Ma, Lu et al. (2014) Common intermediates and kinetics, but different energetics, in the assembly of SNARE proteins. Elife 3:e03348
Zhang, Xinming; Ma, Lu; Zhang, Yongli (2013) High-resolution optical tweezers for single-molecule manipulation. Yale J Biol Med 86:367-83
Zhang, Yongli; Sirinakis, George; Gundersen, Greg et al. (2012) DNA translocation of ATP-dependent chromatin remodeling factors revealed by high-resolution optical tweezers. Methods Enzymol 513:3-28

Showing the most recent 10 out of 15 publications