All isoprenoids are constructed by isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). The essential role played by the deoxyxylulose phosphate (DXP) pathway in prokaryotic IPP and DMAPP biosynthesis and the lack of this pathway in animals makes the DXP pathway enzymes ideal candidates for developing broad-spectrum antibiotics. The DXP pathway is also targeted for herbicide development because its plant mutants are not able to synthesize sufficient amounts of carotenoids and chlorophylls for normal growth. The low natural abundance of isoprenoids has also stimulated interest in their production through bioengineering. Because the limiting factor in bioengineering-based isoprenoid production is the inadequate supply of IPP and DMAPP, mechanistic studies of the DXP pathway will guide the construction of host strains for bioengineering-based isoprenoid production. The proposed project will study the reaction mechanism of one of the DXP pathway rate-limiting steps, a reductive dehydration reaction catalyzed by an iron-sulfur cluster containing IspH protein. Several major achievements accomplished in preliminary studies serve as the basis for the proposed work. In the preliminary studies, IspH activity was improved by 97-fold relative to that reported in the literature. In addition, using substrate analogs, several IspH mechanistic options were examined and narrowed down to a model that is consistent with all current data. [57Fe]-labeled IspH was isolated in large quantities (~500 mg from a one-day purification). Initial EPR and Mvssbauer characterizations demonstrated that the IspH protein developed has both a high degree of iron- sulfur cluster load and homogeneity. Based on these achievements, the team has acquired all the necessary materials and protocols for conducting the proposed studies. Specifically:
In Aim 1, both enzyme- and substrate-based intermediates will be trapped and characterized using a combination of bioorganic and biophysical methods. Several lines of evidence indicate that IspH exists as protein complexes.
In Aim 2, by making use of the strains, reagents, and reporter systems obtained in the preliminary studies, several complementary approaches will be utilized to identify IspH partner proteins and study their functions.

Public Health Relevance

The proposed isoprenoid biosynthetic studies will guide the development of mechanism- based inhibitors of the DXP pathway enzymes, which can be used as broad-spectrum antibiotics. The public health benefit will result from the development of effective new treatments for drug-resistant strains of pathogens, currently of increasing concern worldwide.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Macromolecular Structure and Function A Study Section (MSFA)
Program Officer
Anderson, Vernon
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Boston University
Schools of Arts and Sciences
United States
Zip Code
Hu, Wen; Song, Heng; Sae Her, Ampon et al. (2014) Bioinformatic and biochemical characterizations of C-S bond formation and cleavage enzymes in the fungus Neurospora crassa ergothioneine biosynthetic pathway. Org Lett 16:5382-5
Song, Heng; Her, Ampon Sae; Raso, Fiona et al. (2014) Cysteine oxidation reactions catalyzed by a mononuclear non-heme iron enzyme (OvoA) in ovothiol biosynthesis. Org Lett 16:2122-5
Song, Heng; Leninger, Maureen; Lee, Norman et al. (2013) Regioselectivity of the oxidative C-S bond formation in ergothioneine and ovothiol biosyntheses. Org Lett 15:4854-7
Zhao, Lishan; Chang, Wei-chen; Xiao, Youli et al. (2013) Methylerythritol phosphate pathway of isoprenoid biosynthesis. Annu Rev Biochem 82:497-530
Chang, Wei-chen; Song, Heng; Liu, Hung-wen et al. (2013) Current development in isoprenoid precursor biosynthesis and regulation. Curr Opin Chem Biol 17:571-9
Xiao, Youli; Chang, Wei-chen; Liu, Hung-wen et al. (2011) Study of IspH, a key enzyme in the methylerythritol phosphate pathway using fluoro-substituted substrate analogues. Org Lett 13:5912-5
Xiao, Youli; Rooker, Debra; You, Quincy et al. (2011) IspG-catalyzed positional isotopic exchange in methylerythritol cyclodiphosphate of the deoxyxylulose phosphate pathway: mechanistic implications. Chembiochem 12:527-30
Chang, Wei-chen; Xiao, Youli; Liu, Hung-wen et al. (2011) Mechanistic studies of an IspH-catalyzed reaction: implications for substrate binding and protonation in the biosynthesis of isoprenoids. Angew Chem Int Ed Engl 50:12304-7
Xiao, Youli; Nyland 2nd, Rodney L; Meyers, Caren L Freel et al. (2010) Methylerythritol cyclodiphosphate (MEcPP) in deoxyxylulose phosphate pathway: synthesis from an epoxide and mechanisms. Chem Commun (Camb) 46:7220-2