Accurate multiple sequence alignment (MSA) is the major unsolved problem in protein bioinformatics. Alignments and similarity searches are essential first steps in experimental design for all studies involving proteins, and the accuracy of these methods is crucial for the success in biomedical research. In the course of this project, we plan to significantly improve the accuracy of alignments and the precision of sequence similarity detection between protein families. During the last few years, our group proposed 4 methods for MSA construction and 2 methods for remote homology inference. Presently, our latest program PROMALS3D is judged to be the most accurate aligner for weakly similar sequences. We also performed a comprehensive survey of kinase sequences and structures that revealed 25 homologous groups (superfamilies) in 10 structural folds. Building on these results, we propose to: 1) Improve sensitivity of sequence profile similarity search, mainly by using known relationships between database sequences. 2) Develop software for accurate MSA of sequences with low similarity. The emphasis is being made on employment of structural features and predictions to improve MSA quality. 3) Design an easy to use web server for exploration of protein families. The server could be queried with a single sequence to find, align and analyze its homologs, or with a set of sequences. The central component of the server is MSA using the software developed in this project. 4) Assemble a database of high quality MSAs for kinases and their relatives, and make testable structure-functional predictions for groups without experimental annotations. Since kinases attract considerable attention due to their medical relevance (e.g. cancer studies), this database should be a valuable asset to researchers.

Public Health Relevance

Accurate multiple sequence alignment is the major unsolved problem in protein bioinformatics. Alignments and sequence similarity searches are essential first steps in experimental design for all studies involving proteins, and the accuracy of these methods is crucial for the success of biomedical research. We will improve alignment accuracy and using the new method will analyze kinases, which are a medically important group of enzymes attracting high interest because of their relevance to many diseases, cancer in particular.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM094575-04
Application #
8490396
Study Section
Macromolecular Structure and Function D Study Section (MSFD)
Program Officer
Wehrle, Janna P
Project Start
2010-07-01
Project End
2014-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
4
Fiscal Year
2013
Total Cost
$296,207
Indirect Cost
$109,914
Name
University of Texas Sw Medical Center Dallas
Department
Biochemistry
Type
Schools of Medicine
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
Semeiks, Jeremy; Borek, Dominika; Otwinowski, Zbyszek et al. (2014) Comparative genome sequencing reveals chemotype-specific gene clusters in the toxigenic black mold Stachybotrys. BMC Genomics 15:590
Liao, Yuxing; Pei, Jimin; Cheng, Hua et al. (2014) An ancient autoproteolytic domain found in GAIN, ZU5 and Nucleoporin98. J Mol Biol 426:3935-45
Pei, Jimin; Grishin, Nick V (2014) PROMALS3D: multiple protein sequence alignment enhanced with evolutionary and three-dimensional structural information. Methods Mol Biol 1079:263-71
Salomon, Dor; Kinch, Lisa N; Trudgian, David C et al. (2014) Marker for type VI secretion system effectors. Proc Natl Acad Sci U S A 111:9271-6
Calder, Thomas; Kinch, Lisa N; Fernandez, Jessie et al. (2014) Vibrio type III effector VPA1380 is related to the cysteine protease domain of large bacterial toxins. PLoS One 9:e104387
Chen, Baoyu; Brinkmann, Klaus; Chen, Zhucheng et al. (2014) The WAVE regulatory complex links diverse receptors to the actin cytoskeleton. Cell 156:195-207
Shoji-Kawata, Sanae; Sumpter, Rhea; Leveno, Matthew et al. (2013) Identification of a candidate therapeutic autophagy-inducing peptide. Nature 494:201-6
Li, Wenlin; Cong, Qian; Kinch, Lisa N et al. (2013) Seq2Ref: a web server to facilitate functional interpretation. BMC Bioinformatics 14:30
Ji, Renkai; Cong, Qian; Li, Wenlin et al. (2013) M2SG: mapping human disease-related genetic variants to protein sequences and genomic loci. Bioinformatics 29:2953-4
Pei, Jimin; Grishin, Nick V (2013) A new family of predicted Kruppel-like factor genes and pseudogenes in placental mammals. PLoS One 8:e81109

Showing the most recent 10 out of 20 publications