Since its discovery, the proteasome has generally been viewed as a passive player in the selection of substrates for degradation. This notion has recently been challenged by studies, many from this laboratory, showing that proteasomes rapidly edit ubiquitin chains and that these processes strongly regulate proteasome output. We first examined these issues in yeast, but now propose to focus on mammals, where little is being done. The regulatory systems differ between yeast and mammals, making it especially important that these questions are studied carefully in mammals. For example, whereas yeast has a single enzyme that trims chains on the proteasome, Ubp6, mammals have two: Usp14 (the Ubp6 ortholog) and Uch37. Also, our studies indicate that the influence of chain trimming on degradation rates is more dramatic in mammals. We have developed a specific, small-molecule inhibitor of Usp14. Using this inhibitor, both in vivo and in cells, we discovered an unexpectedly powerful role of chain trimming in regulating degradation. This compound is unique in providing, for the first time, a way to enhance output of the ubiquitin-proteasome pathway. Remarkably, it induces faster degradation of multiple proteotoxic proteins as well as oxidized proteins, and provides resistance to proteotoxic stress. Possible eventual therapeutic applications include, in principle, tens of known diseases in which toxic proteins are expressed or protein degradation is deficient. A screen has also been completed for Uch37, covering 130,000 compounds, and a highly selective inhibitor is in hand. Though Usp14 and Uch37 both trim chains, they seem to regulate the proteasome in distinct ways, for unknown reasons. To understand this, we will first carry out in vitro and model substrate studies testing whether the topological linkage specificity of substrate-bound ubiquitin chains provides an underlying code that could explain the substrate specificities of Usp14 and Uch37 and their effects on degradation rates. Similar model substrate work will assess whether a protein's susceptibility to unfolding by the proteasome in linked to chain trimming. What features of the substrate determine susceptibility to editing factors will be analyzed further using endogenous substrates? We will use state of the art mass spectrometry approaches to determine, on a broad, if not global, scale, which substrates in the cell are regulated via proteasomal chain editing, using the inhibitors as well and gene knockouts in mice. Relevant properties of endogenous substrates, such as the type of ubiquitin chain they carry and their ubiquitin receptor dependence, will be characterized. A final component of the editing system is Hul5, a conserved, proteasome-associated ubiquitin ligase. We have shown Hul5 extends proteasome-bound ubiquitin chains and is thus important for chain editing in yeast, where it antagonizes Ubp6. Thus far Hul5 has essentially not been studied in mammals. The results will provide important new insights into proteasome function and might have relevance to the development of novel therapeutics.

Public Health Relevance

We have discovered a small molecule, and possibly several types of small molecules, that have the unique and unpredicted property of being able to enhance the rate at which certain proteins are destroyed in cells. For the many major diseases in which toxic proteins are expressed, reducing their levels through this new method may have therapeutic benefits. These small molecules inhibit enzymes that normally strip degradation signals (ubiquitin groups) from proteins, and therefore they cause such proteins to be eliminated at an exceptionally fast pace.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM095526-03
Application #
8473882
Study Section
Membrane Biology and Protein Processing (MBPP)
Program Officer
Gindhart, Joseph G
Project Start
2011-06-01
Project End
2015-05-31
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
3
Fiscal Year
2013
Total Cost
$425,671
Indirect Cost
$174,476
Name
Harvard University
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
047006379
City
Boston
State
MA
Country
United States
Zip Code
02115
Boselli, Monica; Lee, Byung-Hoon; Robert, Jessica et al. (2017) An inhibitor of the proteasomal deubiquitinating enzyme USP14 induces tau elimination in cultured neurons. J Biol Chem 292:19209-19225
QuirĂ³s, Pedro M; Prado, Miguel A; Zamboni, Nicola et al. (2017) Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals. J Cell Biol 216:2027-2045
Lu, Ying; Wu, Jiayi; Dong, Yuanchen et al. (2017) Conformational Landscape of the p28-Bound Human Proteasome Regulatory Particle. Mol Cell 67:322-333.e6
Xu, Daichao; Shan, Bing; Lee, Byung-Hoon et al. (2015) Phosphorylation and activation of ubiquitin-specific protease-14 by Akt regulates the ubiquitin-proteasome system. Elife 4:e10510
Schmidt, Marion; Finley, Daniel (2014) Regulation of proteasome activity in health and disease. Biochim Biophys Acta 1843:13-25
King, Randall W; Finley, Daniel (2014) Sculpting the proteome with small molecules. Nat Chem Biol 10:870-4
Liu, Zhengzhao; Chen, Peng; Gao, Hong et al. (2014) Ubiquitylation of autophagy receptor Optineurin by HACE1 activates selective autophagy for tumor suppression. Cancer Cell 26:106-20
Jung, H; Kim, B-G; Han, W H et al. (2013) Deubiquitination of Dishevelled by Usp14 is required for Wnt signaling. Oncogenesis 2:e64
Lee, Byung-Hoon; Finley, Daniel; King, Randall W (2012) A High-Throughput Screening Method for Identification of Inhibitors of the Deubiquitinating Enzyme USP14. Curr Protoc Chem Biol 4:311-30
Finley, Daniel; Ulrich, Helle D; Sommer, Thomas et al. (2012) The ubiquitin-proteasome system of Saccharomyces cerevisiae. Genetics 192:319-60

Showing the most recent 10 out of 11 publications