Eukaryotic motor proteins utilize the cytoskeleton as roadways to transport a variety of intracellular cargo across relatively vast distances. The reaction of ATP with water to produce ADP and inorganic phosphate is the central and primary step in motor proteins that initiates critical cellular functions, including chromosome segregation during mitosis, gene replication, transcription, and transport of vesicles and organelles. These nanomotors all function by consuming this energy and coupling the chemical intermediates to a series of conformational changes that propel net celular motion. For kinesins, defects in this catalytic reaction and its chemo-mechanical transduction are linked to cancer, developmental errors, myopathies, and neurodegenerative conditions in humans. Although a complex sequence of intermediate states during ATP hydrolysis and mechanotransduction is predicted, only a small subset of states has been validated by direct structural observation. Thus, current empirical evidence of atomic-level interactions is not sufficient to assess the complete range of chemical steps in biological ATP hydrolysis and its partnered energy transduction. Recent data from our laboratories has captured key catalytic intermediates that resolve extant questions regarding mechanism and provide a new framework for further progress. Building upon these findings, our principal goal is to define novel roles for proton transfer and hydrogen bonding for ATP hydrolysis and chemo-mechanical coupling in the human Kinesin-5 protein, essential for mitosis and a target for cancer therapeutics. Questions to be tested are the identity of the chemical player in the first step of ATP hydrolysis, whether loops flanking the active site undergo conformational changes in the enzyme transition state, and if the central 2-sheet has a role in transducing information from the active site to other sites. The significance of the anticipated answers is twofold. As chemistry and motion are tautologically linked, this information is required to illuminate molecular mechanisms of motion in nanomotors, which are currently unclear from these deficits. Moreover, garnered experimental evidence will allow rational design of anti-cancer drugs directed against human Kinesin-5.

Public Health Relevance

Kinesin motors are the smallest moving machines known in biology, and humans have approximately 50 different kinds of kinesin motors. Understanding the key reaction in obtaining energy to operate and move can lead to control of not only individual, cellular processes, but also specific cell types. The information garnered from this proposal may offer clinical power over human syndromes, such as dividing cancer cells, neurological disorders, and infertility.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
3R01GM097350-04S1
Application #
8876965
Study Section
Macromolecular Structure and Function C Study Section (MSFC)
Program Officer
Gindhart, Joseph G
Project Start
2011-08-01
Project End
2016-07-31
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
4
Fiscal Year
2014
Total Cost
$45,032
Indirect Cost
$13,760
Name
Louisiana State Univ Hsc New Orleans
Department
Biochemistry
Type
Schools of Medicine
DUNS #
782627814
City
New Orleans
State
LA
Country
United States
Zip Code
70112
Liu, Liqiong; Richard, Jessica; Kim, Sunyoung et al. (2014) Small molecule screen for candidate antimalarials targeting Plasmodium Kinesin-5. J Biol Chem 289:16601-14
Wojcik, Edward J; Buckley, Rebecca S; Richard, Jessica et al. (2013) Kinesin-5: cross-bridging mechanism to targeted clinical therapy. Gene 531:133-49