The goal of this project is the development of an innovative platform for discovery of small molecule chemokine inhibitors. Chemokines direct cell migration primarily by binding and activating a family of G protein-coupled receptors that are post-translationally modified by tyrosine sulfation. Sulfation is required for chemokine function, suggesting that receptor sulfotyrosines participate directly in specific binding of the chemokine ligand. We recently revealed the molecular basis for sulfotyrosine recognition in the chemokine family by solving the NMR structure of a complex between the chemokine SDF1/CXCL12 and a sulfotyrosine-containing fragment of its receptor CXCR4. The N-terminal extracellular domain of CXCR4 contains three potential sulfation sites, and each sulfotyrosine occupies a unique cleft on the CXC12 surface. We hypothesize that because sulfotyrosine recognition sites are essential for high affinity receptor binding, each one represents a target for inhibition using small molecules directed at the chemokine ligand.
In specific aim 1 we propose to define additional sulfotyrosine recognition sites on the CXCL12 surface and use a combination of high-throughput docking calculations, validation of site-specific ligand binding by 2D NMR, and functional assays to test for chemokine inhibition. We will refine our in silico screening methods in aim 2 using the structure of the CXCL12/CXCR4 complex as a test case for evaluation of flexible side chain docking and fragment screening against the ensemble of NMR conformers. Hit-to-lead and lead optimization will be performed for affinity and selectivity in specific aim 3 using SAR analysis and by designing and synthesizing novel compounds that combine ligands from adjacent sulfotyrosine recognition sites. Compounds that bind CXCL12 and function as potent and selective inhibitors in cell-based chemokine assays will be made available to existing collaborators for preclinical studies in animals. To assess the broader potential of sulfotyrosine- directed inhibition, we will develop a streamlined approach to site identification in specific aim 4 and apply our screening method to a representative set of chemokine targets. Structure-based drug discovery guided by sulfotyrosine recognition is a conceptual advance that can be applied to all 50 members of the chemokine family and other complexes that require this protein modification to function in the extracellular space. New treatments for inflammatory and autoimmune disease or cancer that emerge from application of this strategy will have a major impact on human health.

Public Health Relevance

Chemokines orchestrate innate immune responses to injury or infection, and also participate in embryonic development, stem cell homing, chronic inflammation, HIV infection and cancer metastasis. Over 20 cancer types express metastasize to tissues that secrete the chemokine CXCL12, including bone marrow, lung, liver and lymph nodes. CXCL12 and other members of the chemokine family have been validated as targets for anti-inflammatory and autoimmune drug discovery. New chemokine inhibitors developed in this project will likely find application as diagnostic and therapeutic agents in a wide range of human diseases, including cardiovascular disease, cancer and multiple sclerosis.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM097381-02
Application #
8245006
Study Section
Macromolecular Structure and Function B Study Section (MSFB)
Program Officer
Dunsmore, Sarah
Project Start
2011-04-01
Project End
2015-03-31
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
2
Fiscal Year
2012
Total Cost
$410,351
Indirect Cost
$104,561
Name
Medical College of Wisconsin
Department
Biochemistry
Type
Schools of Medicine
DUNS #
937639060
City
Milwaukee
State
WI
Country
United States
Zip Code
53226
Ziarek, Joshua J; Veldkamp, Christopher T; Zhang, Fuming et al. (2013) Heparin oligosaccharides inhibit chemokine (CXC motif) ligand 12 (CXCL12) cardioprotection by binding orthogonal to the dimerization interface, promoting oligomerization, and competing with the chemokine (CXC motif) receptor 4 (CXCR4) N terminus. J Biol Chem 288:737-46
Ziarek, Joshua J; Getschman, Anthony E; Butler, Stephen J et al. (2013) Sulfopeptide probes of the CXCR4/CXCL12 interface reveal oligomer-specific contacts and chemokine allostery. ACS Chem Biol 8:1955-63
Ziarek, Joshua J; Heroux, Maxime S; Veldkamp, Christopher T et al. (2011) Sulfotyrosine recognition as marker for druggable sites in the extracellular space. Int J Mol Sci 12:3740-56
Ziarek, Joshua J; Peterson, Francis C; Lytle, Betsy L et al. (2011) Binding site identification and structure determination of protein-ligand complexes by NMR a semiautomated approach. Methods Enzymol 493:241-75