Despite significant advances in neonatal intensive care, including directed antibiotic therapy, mortality from neonatal sepsis remains significant with more than three million deaths worldwide. The highest risk of mortality occurs in preterm, low birth weight (LBW) and very low birth weight (VLBW) neonates. During the initial funding period of this award, we made three novel observations: 1) the neonate relies predominantly on its innate immune system to recognize infections and to provide early protective immunity, 2) host innate immunity is also defective due in part to a failure of innate immune cells to recognize and respond to chemokines essential for recruitment and activation, and 3) adjuvant treatment of mice with TLR and NLR agonists can stimulate PMN function, improve protective immunity, and increase survival to sepsis through MyD88- and inflammasome-independent pathways. Based on these findings, our ultimate goal is to develop adjuvant- therapies based on TLR signaling that can reduce the incidence and severity of both early and late sepsis in LBW/VLBW infants. To accomplish this, there are three specific aims: 1) To delineate the mechanism by which pretreatment of neonates with TRIF-specific pattern recognition receptor (PRRs) agonists improves survival in neonatal sepsis; 2) To determine the mechanisms by which immune adjuvants improve protective immunity and outcomes to neonatal sepsis; and, 3) To determine whether LBW and VLBW infants express comparable defects in PMN chemotaxis, ROS production and bacterial killing seen in PMNs from murine models of neonatal sepsis, and whether treatment of these human cells with TLR4 agonists restores innate immune function. The first two specific aims will determine the mechanisms by which pretreatment of neonatal mice with TRIF-specific TLR4 agonists with and without alum adjuvants improves outcome from E.coli and polymicrobial sepsis. The final specific aim will validate whether the protective effect of TLR agonists and alum seen in neonatal mice are recapitulated in cord and peripheral blood from full-term and LBW/VLBW infants. The ultimate goal of these studies is the reduction of early and late sepsis with improved survival in the highly vulnerable LBW/VLBW infant population by augmenting their immature innate immune system. Ultimately, it is our goal (at the end of this proposed funding period) to move novel or FDA-approved adjuvants and unique TRIF agonists into preliminary clinical trials in LBW/VLBW infants at risk of developing sepsis.

Public Health Relevance

Low and very low birth weight infants have an increased incidence and severity of sepsis due in large part to defective host protective immunity. This proposal investigates the development of novel immune adjuvants based on TLR signaling that can stimulate innate immunity and protect low and very low birth weight infants from early and late sepsis.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM097531-06
Application #
9102126
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Brown, Jeremy
Project Start
2011-04-01
Project End
2019-06-30
Budget Start
2016-07-01
Budget End
2017-06-30
Support Year
6
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Florida
Department
Surgery
Type
Schools of Medicine
DUNS #
969663814
City
Gainesville
State
FL
Country
United States
Zip Code
32611
Mathias, Brittany; Mira, Juan C; Larson, Shawn D (2016) Pediatric sepsis. Curr Opin Pediatr 28:380-7
Wynn, James Lawrence; Wilson, Chris S; Hawiger, Jacek et al. (2016) Targeting IL-17A attenuates neonatal sepsis mortality induced by IL-18. Proc Natl Acad Sci U S A 113:E2627-35
Cuenca, Alex G; Joiner, Dallas N; Gentile, Lori F et al. (2015) TRIF-dependent innate immune activation is critical for survival to neonatal gram-negative sepsis. J Immunol 194:1169-77
Efron, Philip A; Mohr, Alicia M; Moore, Frederick A et al. (2015) The future of murine sepsis and trauma research models. J Leukoc Biol 98:945-52
Cuenca, Alex G; Cuenca, Angela L; Gentile, Lori F et al. (2015) Delayed emergency myelopoiesis following polymicrobial sepsis in neonates. Innate Immun 21:386-91
Gentile, Lori F; Cuenca, Angela L; Cuenca, Alex G et al. (2015) Improved emergency myelopoiesis and survival in neonatal sepsis by caspase-1/11 ablation. Immunology 145:300-11
Wynn, James L; Guthrie, Scott O; Wong, Hector R et al. (2015) Postnatal Age Is a Critical Determinant of the Neonatal Host Response to Sepsis. Mol Med 21:496-504
Gentile, Lori F; Nacionales, Dina C; Lopez, M Cecilia et al. (2014) A better understanding of why murine models of trauma do not recapitulate the human syndrome. Crit Care Med 42:1406-13
Gentile, Lori F; Nacionales, Dina C; Lopez, M Cecilia et al. (2014) Protective immunity and defects in the neonatal and elderly immune response to sepsis. J Immunol 192:3156-65
Gentile, Lori F; Nacionales, Dina C; Lopez, M Cecilia et al. (2014) Host responses to sepsis vary in different low-lethality murine models. PLoS One 9:e94404

Showing the most recent 10 out of 17 publications