Chromosome inheritance ensures transmission of genetic and genomic information. Abnormal chromosome number (aneuploidy) and altered chromosome structure cause birth defects, reproductive abnormalities, and cancer. The centromere is the locus required for chromosome segregation and genome stability. Normal chromosomes typically have one centromere, but genome rearrangements associated with birth defects and cancer produce chromosomes in which two centromeres are physically linked. These dicentrics are not naturally tolerated in most model organisms, as originally illustrated in maize by Barbara McClintock nearly 75 years ago. In humans, dicentric chromosomes occur non-randomly and can be extremely stable during cell division. Such stability has been attributed to centromere inactivation, the poorly understood process by which one centromere is functionally suppressed. Our goal is to define molecular pathways responsible for dicentric formation and long-term stability. We hypothesize that (A) formation of common dicentrics is linked to genomic features of acrocentric chromosomes, and (B) centromere inactivation routinely occurs by either genomic or epigenetic mechanisms. A major impediment in studying centromere inactivation in humans has been the absence of experimental systems. To circumvent this long-standing problem, we have developed assays to engineer dicentric human chromosomes that molecularly mirror those that occur naturally. Engineered dicentrics represented a model system to study normal centromere function, centromere repression and genome stability. Using these experimental models, we propose three specific aims: 1) To identify sequence-dependent mechanisms of dicentric formation, 2) To define the molecular pathways by which dicentric chromosomes are stabilized, including genomic, epigenetic and temporal changes associated with centromere inactivation, and 3) To experimentally test models of centromere inactivation using protein tethering and engineered genomic deletions. Collectively, these studies will define the mechanistic basis for non-random participation of acrocentric chromosomes in naturally occurring and experimentally produced chromosome fusions. Our studies will also be critical for evaluating current models of centromere function, and provide new insights into mechanisms that specify and maintain centromeres on human chromosomes.

Public Health Relevance

Dicentric chromosomes are abnormal chromosome rearrangements associated with aging, cancer, birth defects like Down syndrome, miscarriages, and infertility. These chromosomes contain two centromeres instead of only one, and in many organisms, this makes them inherently unstable and prone to breakage. In humans, however, dicentric chromosome rearrangements are common and remarkably stable, but how they form and what determines their fate after formation is not well understood. In this application, we will re-create common dicentric human chromosomes in the laboratory and study their behavior. The projected outcome of this proposal will be a deeper understanding of how and why dicentric chromosomes are so prevalent and preferentially stable in the human population.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM098500-03
Application #
8616075
Study Section
Molecular Genetics B Study Section (MGB)
Program Officer
Carter, Anthony D
Project Start
2012-05-01
Project End
2016-02-29
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
3
Fiscal Year
2014
Total Cost
$305,866
Indirect Cost
$111,047
Name
Duke University
Department
Genetics
Type
Schools of Medicine
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
McNulty, Shannon M; Sullivan, Lori L; Sullivan, Beth A (2017) Human Centromeres Produce Chromosome-Specific and Array-Specific Alpha Satellite Transcripts that Are Complexed with CENP-A and CENP-C. Dev Cell 42:226-240.e6
Johnson, Whitney L; Yewdell, William T; Bell, Jason C et al. (2017) RNA-dependent stabilization of SUV39H1 at constitutive heterochromatin. Elife 6:
Sullivan, Lori L; Maloney, Kristin A; Towers, Aaron J et al. (2016) Human centromere repositioning within euchromatin after partial chromosome deletion. Chromosome Res 24:451-466
Aldrup-MacDonald, Megan E; Kuo, Molly E; Sullivan, Lori L et al. (2016) Genomic variation within alpha satellite DNA influences centromere location on human chromosomes with metastable epialleles. Genome Res 26:1301-1311
Ross, Justyne E; Woodlief, Kaitlin Stimpson; Sullivan, Beth A (2016) Inheritance of the CENP-A chromatin domain is spatially and temporally constrained at human centromeres. Epigenetics Chromatin 9:20
Aldrup-Macdonald, Megan E; Sullivan, Beth A (2014) The past, present, and future of human centromere genomics. Genes (Basel) 5:33-50
Stimpson, Kaitlin M; Sullivan, Lori L; Kuo, Molly E et al. (2014) Nucleolar organization, ribosomal DNA array stability, and acrocentric chromosome integrity are linked to telomere function. PLoS One 9:e92432
Sun, Meng; Grigsby, Iwen F; Gorelick, Robert J et al. (2014) Retrovirus-specific differences in matrix and nucleocapsid protein-nucleic acid interactions: implications for genomic RNA packaging. J Virol 88:1271-80
Scott, Kristin C; Sullivan, Beth A (2014) Neocentromeres: a place for everything and everything in its place. Trends Genet 30:66-74
Earnshaw, W C; Allshire, R C; Black, B E et al. (2013) Esperanto for histones: CENP-A, not CenH3, is the centromeric histone H3 variant. Chromosome Res 21:101-6

Showing the most recent 10 out of 15 publications