Glycosylation is one of the most common post-translational modifications of proteins. It is estimated that over half of mammalian proteins are glycosylated. Patients with several autoimmune disorders, chronic inflammatory diseases, and some infectious diseases exhibit abnormal glycosylation of serum immunoglobulins and other glycoproteins. The biological functions of these modifications in health and disease have become a significant area of interest in biomedical research. A subset of these glycoproteins has clustered sites of O-glycosylation with serine- and threonine-rich stretches within the amino acid sequence. Mucins, such as membrane-associated MUC1, are perhaps the best known family of proteins that are heavily O-glycosylated. Their altered expression and aberrant glycosylation in cancer have made them potential targets as biomarkers for early detection of the disease. Immunoglobulin A1 (IgA1) contains both O- and N- glycans. Aberrant O-glycosylation of IgA1 is involved in the pathogenesis of IgA nephropathy (IgAN). Interestingly, the aberrantly glycosylated molecules, IgA1 in IgAN and MUC1 in cancer, are recognized by the immune system as neoepitopes, as evidenced by formation of specific antibodies. Locating and characterizing the entire range of O-glycan attachment sites within this class of glycoproteins is analytically challenging due to the clustered serine, threonine, and often proline residues. We have recently developed protocols for the assessment of clustered IgA1 O-glycan macroheterogeneity (range and distribution of O-glycans attached within a 30-amino acid region) and microheterogeneity (range and distribution of O-glycan chains at each amino acid site within the same region) by use of high-resolution mass spectrometry and electron capture (or transfer) dissociation tandem mass spectrometry. Our recent progress with this challenge has led to the realization that a series of analytical tools for the analysis of clustered O-glycans in clinical samples needs to be standardized if proteins with clustered sites of O-glycosylation are to become reliable biomarkers. We propose the following specific aims to provide standardized guidelines for this class of post-translationally modified proteins in clinical samples: 1) Define the primary structure of clustered sites of O-glycosylation in IgA1 proteins from a series of clinical samples centered around patients with IgAN;2) Define the range of clustered O-glycan structures that are recognized by five different lectins;and 3) Develop strategies for the quantitative assessment of individual protein and peptide clustered O-glycoforms.

Public Health Relevance

This proposal seeks to develop analytical tools for the analysis of clustered O-glycans in clinical samples that have become targets for their potential as biomarkers for cancer and other diseases. We will use high- resolution mass spectrometry and validated glycan-specific lectins to establish standards for the analysis of proteins with clustered sites of O-glycosylation. The goals are to identify and characterize the complete range of O-glycoprotein forms (for a single protein) in clinical samples, clearly defining lectin O-glycan recognition structures, and quantitatively analyze individual O-glycopeptides in clinical samples.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Enabling Bioanalytical and Imaging Technologies Study Section (EBIT)
Program Officer
Marino, Pamela
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Alabama Birmingham
Schools of Medicine
United States
Zip Code
Reily, Colin; Ueda, Hiroyuki; Huang, Zhi-Qiang et al. (2014) Cellular signaling and production of galactose-deficient IgA1 in IgA nephropathy, an autoimmune disease. J Immunol Res 2014:197548
Takahashi, Kazuo; Raska, Milan; Stuchlova Horynova, Milada et al. (2014) Enzymatic sialylation of IgA1 O-glycans: implications for studies of IgA nephropathy. PLoS One 9:e99026
Yanagawa, Hiroyuki; Suzuki, Hitoshi; Suzuki, Yusuke et al. (2014) A panel of serum biomarkers differentiates IgA nephropathy from other renal diseases. PLoS One 9:e98081
Suzuki, Hitoshi; Raska, Milan; Yamada, Koshi et al. (2014) Cytokines alter IgA1 O-glycosylation by dysregulating C1GalT1 and ST6GalNAc-II enzymes. J Biol Chem 289:5330-9
Kiryluk, Krzysztof; Novak, Jan (2014) The genetics and immunobiology of IgA nephropathy. J Clin Invest 124:2325-32
Suzuki, Yusuke; Matsuzaki, Keiichi; Suzuki, Hitoshi et al. (2014) Serum levels of galactose-deficient immunoglobulin (Ig) A1 and related immune complex are associated with disease activity of IgA nephropathy. Clin Exp Nephrol 18:770-7
Schmitt, Roland; Ståhl, Anne-Lie; Olin, Anders I et al. (2014) The combined role of galactose-deficient IgA1 and streptococcal IgA-binding M Protein in inducing IL-6 and C3 secretion from human mesangial cells: implications for IgA nephropathy. J Immunol 193:317-26
Stuchlova Horynova, Milada; Raska, Milan; Clausen, Henrik et al. (2013) Aberrant O-glycosylation and anti-glycan antibodies in an autoimmune disease IgA nephropathy and breast adenocarcinoma. Cell Mol Life Sci 70:829-39
Mestecky, Jiri; Raska, Milan; Julian, Bruce A et al. (2013) IgA nephropathy: molecular mechanisms of the disease. Annu Rev Pathol 8:217-40
Franc, Vojtech; Rehulka, Pavel; Raus, Martin et al. (2013) Elucidating heterogeneity of IgA1 hinge-region O-glycosylation by use of MALDI-TOF/TOF mass spectrometry: role of cysteine alkylation during sample processing. J Proteomics 92:299-312

Showing the most recent 10 out of 15 publications