Protein posttranslational modifications are important for regulating protein function and are involved in numerous biological processes. Protein acetylation, controlled by acetyltransferases and deacetylases, are known to play important roles in regulation of transcription and metabolism. The acetyl donor, acetyl-CoA, is a metabolic intermediate in cells. Recently, our laboratory discovered several novel acyl lysine modifications that are structurally very different from acetyl. We have shown that these new acyl lysine modifications occur in mammalian cells and there are dedicated enzymes (sirtuins) that can remove them efficiently. These new acyl lysine modifications, like acetylation, also come from common metabolic intermediates, suggesting that these modifications may be a mechanism of sensing metabolism to regulate protein function. Studying these new modifications will allow us to better understand the chemistry of biological systems. The study has the potential to provide answers to a number of puzzles in the protein acetylation field, such as the lack of enzymatic activity for about half of the protein deacetylases. Because these acyl lysine modifications have not been studied before, no tools are available to investigate them. The existence of multiple acyl lysine modifications also adds a layer of technical complexity to the study of these modifications. The goal of this proposal is to develop new and better methods to detect and quantify these modifications and then use these methods to investigate the occurrence, regulation, and function of these modifications.

Public Health Relevance

This proposal aims to develop chemical and biochemical tools to study novel protein acyl lysine modifications. These acyl lysine modifications are recently discovered in our laboratory and are structurally different from lysine acetylation, which is known to control numerous biological pathways and considered important drug target. The proposed study will provide fundamental understandings of the chemistry of metabolism and protein regulation that will eventually facilitate the development of new therapeutics to treat human diseases.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Synthetic and Biological Chemistry A Study Section (SBCA)
Program Officer
Fabian, Miles
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Cornell University
Schools of Arts and Sciences
United States
Zip Code
Jiang, Hong; Zhang, Xiaoyu; Chen, Xiao et al. (2018) Protein Lipidation: Occurrence, Mechanisms, Biological Functions, and Enabling Technologies. Chem Rev 118:919-988
Zhang, Xiaoyu; Spiegelman, Nicole A; Nelson, Ornella D et al. (2017) SIRT6 regulates Ras-related protein R-Ras2 by lysine defatty-acylation. Elife 6:
Wang, Yi; Fung, Yi Man Eva; Zhang, Weizhe et al. (2017) Deacylation Mechanism by SIRT2 Revealed in the 1'-SH-2'-O-Myristoyl Intermediate Structure. Cell Chem Biol 24:339-345
Aramsangtienchai, Pornpun; Spiegelman, Nicole A; Cao, Ji et al. (2017) S-Palmitoylation of Junctional Adhesion Molecule C Regulates Its Tight Junction Localization and Cell Migration. J Biol Chem 292:5325-5334
Wang, Zhipeng A; Kurra, Yadagiri; Wang, Xin et al. (2017) A Versatile Approach for Site-Specific Lysine Acylation in Proteins. Angew Chem Int Ed Engl 56:1643-1647
Zhang, Xiaoyu; Khan, Saba; Jiang, Hong et al. (2016) Identifying the functional contribution of the defatty-acylase activity of SIRT6. Nat Chem Biol 12:614-20
Aramsangtienchai, Pornpun; Spiegelman, Nicole A; He, Bin et al. (2016) HDAC8 Catalyzes the Hydrolysis of Long Chain Fatty Acyl Lysine. ACS Chem Biol 11:2685-2692
Sadhukhan, Sushabhan; Liu, Xiaojing; Ryu, Dongryeol et al. (2016) Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function. Proc Natl Acad Sci U S A 113:4320-5
Liu, Xiaojing; Sadhukhan, Sushabhan; Sun, Shengyi et al. (2015) High-Resolution Metabolomics with Acyl-CoA Profiling Reveals Widespread Remodeling in Response to Diet. Mol Cell Proteomics 14:1489-500
He, Bin; Hu, Jing; Zhang, Xiaoyu et al. (2014) Thiomyristoyl peptides as cell-permeable Sirt6 inhibitors. Org Biomol Chem 12:7498-502

Showing the most recent 10 out of 11 publications