The long-term objective of the proposed project is to provide a comprehensive platform, MUFOLD, for efficient and consistently accurate protein tertiary structure prediction. MUFOLD will help experimental biologists understand structures and functions of the proteins of their interest thereby facilitating hypotheses for experimental design. We will focus on the Funding Opportunity Announcement's second objective -- "High- Accuracy Models for Remote Homologs of Known Structures" which states "the quality of these models should be close to X-ray structures or high-resolution NMR structures with less than 2 Angstrom RMSD for backbone and side-chain atoms consistently for all protein targets." Specifically, we will integrate bioinformatics techniques, graph and network theories, computational algorithms, global optimization methods, statistics evaluations, etc. to develop a template-based structure prediction system, in which model generation, model quality assessment (QA), and model refinement will be seamlessly integrated together. At first, we will apply relevant information from the known template database (PDB) in depth as well as multi-layer QA methods to guide an efficient model generation in a small and targeted conformation space, which will facilitate computational efficiency and a limited number of models for QA methods to select. Secondly, we will improve the overall discerning power of QA by integrating various QA scores of a model and its structural relationships to other models generated for the same target protein. Thirdly, we will develop a population-based model refinement protocol, which integrates different levels of QA and efficient model generation techniques to improve the overall quality of models. Our goals are 1) to improve the prediction speed such that the prediction for a target protein with 200~300 residues can be finished in minutes on a multi-core desktop machine;2) to enhance the QA ability of selecting the best models from the generated candidates, and decrease the current average ~10-point GDT-TS loss from the best available model to <5 points;3) to achieve the prediction accuracy for remote homolog proteins within 2 Angstrom RMSD for backbone and side-chain atoms on average;and 4) to collaborate with PSI (Protein Structure Initiative) and others for various applications, such as performing homolog modeling for proteins with sequence similarity to newly determined structures, building complete models for incomplete structures, and predicting potential mutation sites to make protein soluble.

Public Health Relevance

Protein structure prediction can provide valuable information for understanding disease mechanisms and designing drugs. Current computational methods are still far from consistently providing accurate structures. With rapid accumulating protein sequences derived from next-generation sequencing, software tools that can significantly improve the accuracy and efficiency of protein structure prediction are urgently needed, and our proposed development will address this need by developing a set of integrated novel methodologies.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BCMB-S (02))
Program Officer
Smith, Ward
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Missouri-Columbia
Biostatistics & Other Math Sci
Schools of Engineering
United States
Zip Code
Li, Zhou; Wang, Yingfeng; Yao, Qiuming et al. (2014) Diverse and divergent protein post-translational modifications in two growth stages of a natural microbial community. Nat Commun 5:4405
Yao, Qiuming; Ge, Huangyi; Wu, Shangquan et al. (2014) P³DB 3.0: From plant phosphorylation sites to protein networks. Nucleic Acids Res 42:D1206-13
Yu, DongMei; Zhang, Chao; Qin, PeiWu et al. (2014) RNA-protein distance patterns in ribosomes reveal the mechanism of translational attenuation. Sci China Life Sci 57:1131-9
Yang, Jiaoyun; Xu, Yun; Shang, Yi et al. (2014) A Space-Bounded Anytime Algorithm for the Multiple Longest Common Subsequence Problem. IEEE Trans Knowl Data Eng 26:2599-2609
Nguyen, Son P; Shang, Yi; Xu, Dong (2014) DL-PRO: A Novel Deep Learning Method for Protein Model Quality Assessment. Proc Int Jt Conf Neural Netw 2014:2071-2078
Wang, Han; He, Zhiquan; Zhang, Chao et al. (2013) Transmembrane protein alignment and fold recognition based on predicted topology. PLoS One 8:e69744
Zhang, Chao; Wang, Jiguang; Hanspers, Kristina et al. (2013) NOA: a cytoscape plugin for network ontology analysis. Bioinformatics 29:2066-7
Wang, Juexin; Chen, Liang; Wang, Yan et al. (2013) A computational systems biology study for understanding salt tolerance mechanism in rice. PLoS One 8:e64929
Zhang, Jingfen; Xu, Dong (2013) Fast algorithm for population-based protein structural model analysis. Proteomics 13:221-9
He, Zhiquan; Alazmi, Meshari; Zhang, Jingfen et al. (2013) Protein structural model selection by combining consensus and single scoring methods. PLoS One 8:e74006