Mitochondria are cytoplasmic organelles that perform many crucial functions in eukaryotic cells, among them generation of most cellular ATP. Mitochondrial dysfunction is implicated in diverse pathologies such as type 2 diabetes, sarcopenia, neurodegeneration, and cancer. Despite their central importance to human health, mechanisms by which mitochondrial functions are regulated remain incompletely understood. The rationale for this application is that improved insights into such mechanisms may permit development of therapeutics to modulate mitochondrial functions as treatments for a wide variety of human diseases. This application focuses on novel roles for sirtuin proteins in regulating key mitochondrial functions. Sirtuins are a family of deacetylases that promote increased longevity in invertebrate models and modulate diverse processes in mammals. The application is based on two novel observations. First, the mitochondrial sirtuin SIRT5 plays a hitherto undescribed role in deacetylating and suppressing activity of Pyruvate Dehydrogenase Complex (PDC), a mitochondrial holoenzyme with a major role in regulating glucose oxidation in mammalian cells. PDC dysfunction is implicated in type 2 diabetes, cancer, and cardiac ischemia. Novel means of stimulating PDC activity - as by SIRT5 inhibition - would be beneficial in these and other clinical settings. Second, the sirtuin SIRT6 has an unexpected role in stimulating mitochondrial respiration. Adipose tissue- specific SIRT6 knockout (S6AKO) mice show marked adiposity, potentially due in part to mitochondrial respiratory defects in brown adipose tissue (BAT). The overall objective of this application is to elucidate novel mechanisms of mitochondrial regulation by sirtuin proteins, thus addressing a key knowledge gap in mitochondrial biology. The hypotheses of this application are two-fold. The first hypothesis is that SIRT5 inhibits glucose oxidation by attenuating PDC activity. The second hypothesis is that SIRT6 promotes mitochondrial respiration to promote cellular and organismal homeostasis. These hypotheses will be tested in two specific aims. First, the roles of SIRT5 in regulating PDC will be elucidated at a mechanistic level through a combination of mass spectrometry, mutagenesis, in vivo flux analysis, and high fat feeding. Second, the role of SIRT6 in promoting mitochondrial respiration will be defined mechanistically. The function of SIRT6 in suppressing adiposity will be elucidated through detailed characterization of S6AKO mice, and through generation of BAT-specific SIRT6 knockouts. This application is innovative, since it focuses on novel functions for sirtuins in regulating mitochondrial energetics. A variety of cutting-edge techniques will be brought to bear to test these hypotheses. The application is significant, since it will establish novel links between sirtuins and mitochondria, potentially laying the groundwork for future sirtuin-directed therapies to modulate glucose oxidation and/or mitochondrial respiration. Hence this work falls within the overall mission of NIGMS.

Public Health Relevance

This application proposes to elucidate novel roles for the sirtuin deacetylases in mitochondrial regulation. Mitochondria are cytoplasmic organelles that generate the majority of cellular energy. Mitochondrial dysfunction is implicated in a variety of age-associated pathologies such as muscle weaknesss, type 2 diabetes, neurodegeneration, and cardiac disease. Elucidation of novel mechanisms by which mitochondrial functions are regulated may allow development of therapies to enhance mitochondrial functions in these and other diseases.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Integrative Physiology of Obesity and Diabetes Study Section (IPOD)
Program Officer
Anderson, Vernon
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Michigan Ann Arbor
Schools of Medicine
Ann Arbor
United States
Zip Code
Guetschow, Erik D; Kumar, Surinder; Lombard, David B et al. (2016) Identification of sirtuin 5 inhibitors by ultrafast microchip electrophoresis using nanoliter volume samples. Anal Bioanal Chem 408:721-31
Kumar, Surinder; Lombard, David B (2016) Generation and Purification of Catalytically Active Recombinant Sirtuin5 (SIRT5) Protein. Methods Mol Biol 1436:241-57
Novgorodov, Sergei A; Riley, Christopher L; Keffler, Jarryd A et al. (2016) SIRT3 Deacetylates Ceramide Synthases: IMPLICATIONS FOR MITOCHONDRIAL DYSFUNCTION AND BRAIN INJURY. J Biol Chem 291:1957-73
Lombard, David B; Dash, Banaja P; Kumar, Surinder (2015) Acetyl-ed question in mitochondrial biology? EMBO J 34:2597-600
Owczarczyk, Anna B; Schaller, Matthew A; Reed, Michelle et al. (2015) Sirtuin 1 Regulates Dendritic Cell Activation and Autophagy during Respiratory Syncytial Virus-Induced Immune Responses. J Immunol 195:1637-46
Colak, Gozde; Pougovkina, Olga; Dai, Lunzhi et al. (2015) Proteomic and Biochemical Studies of Lysine Malonylation Suggest Its Malonic Aciduria-associated Regulatory Role in Mitochondrial Function and Fatty Acid Oxidation. Mol Cell Proteomics 14:3056-71
Kumar, Surinder; Lombard, David B (2015) Mitochondrial sirtuins and their relationships with metabolic disease and cancer. Antioxid Redox Signal 22:1060-77
Lombard, David B; Zwaans, Bernadette M M (2014) SIRT3: as simple as it seems? Gerontology 60:56-64
Giblin, William; Skinner, Mary E; Lombard, David B (2014) Sirtuins: guardians of mammalian healthspan. Trends Genet 30:271-86
Tan, Minjia; Peng, Chao; Anderson, Kristin A et al. (2014) Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab 19:605-17

Showing the most recent 10 out of 20 publications