Mitochondria are cytoplasmic organelles that perform many crucial functions in eukaryotic cells, among them generation of most cellular ATP. Mitochondrial dysfunction is implicated in diverse pathologies such as type 2 diabetes, sarcopenia, neurodegeneration, and cancer. Despite their central importance to human health, mechanisms by which mitochondrial functions are regulated remain incompletely understood. The rationale for this application is that improved insights into such mechanisms may permit development of therapeutics to modulate mitochondrial functions as treatments for a wide variety of human diseases. This application focuses on novel roles for sirtuin proteins in regulating key mitochondrial functions. Sirtuins are a family of deacetylases that promote increased longevity in invertebrate models and modulate diverse processes in mammals. The application is based on two novel observations. First, the mitochondrial sirtuin SIRT5 plays a hitherto undescribed role in deacetylating and suppressing activity of Pyruvate Dehydrogenase Complex (PDC), a mitochondrial holoenzyme with a major role in regulating glucose oxidation in mammalian cells. PDC dysfunction is implicated in type 2 diabetes, cancer, and cardiac ischemia. Novel means of stimulating PDC activity - as by SIRT5 inhibition - would be beneficial in these and other clinical settings. Second, the sirtuin SIRT6 has an unexpected role in stimulating mitochondrial respiration. Adipose tissue- specific SIRT6 knockout (S6AKO) mice show marked adiposity, potentially due in part to mitochondrial respiratory defects in brown adipose tissue (BAT). The overall objective of this application is to elucidate novel mechanisms of mitochondrial regulation by sirtuin proteins, thus addressing a key knowledge gap in mitochondrial biology. The hypotheses of this application are two-fold. The first hypothesis is that SIRT5 inhibits glucose oxidation by attenuating PDC activity. The second hypothesis is that SIRT6 promotes mitochondrial respiration to promote cellular and organismal homeostasis. These hypotheses will be tested in two specific aims. First, the roles of SIRT5 in regulating PDC will be elucidated at a mechanistic level through a combination of mass spectrometry, mutagenesis, in vivo flux analysis, and high fat feeding. Second, the role of SIRT6 in promoting mitochondrial respiration will be defined mechanistically. The function of SIRT6 in suppressing adiposity will be elucidated through detailed characterization of S6AKO mice, and through generation of BAT-specific SIRT6 knockouts. This application is innovative, since it focuses on novel functions for sirtuins in regulating mitochondrial energetics. A variety of cutting-edge techniques will be brought to bear to test these hypotheses. The application is significant, since it will establish novel links between sirtuins and mitochondria, potentially laying the groundwork for future sirtuin-directed therapies to modulate glucose oxidation and/or mitochondrial respiration. Hence this work falls within the overall mission of NIGMS.

Public Health Relevance

This application proposes to elucidate novel roles for the sirtuin deacetylases in mitochondrial regulation. Mitochondria are cytoplasmic organelles that generate the majority of cellular energy. Mitochondrial dysfunction is implicated in a variety of age-associated pathologies such as muscle weaknesss, type 2 diabetes, neurodegeneration, and cardiac disease. Elucidation of novel mechanisms by which mitochondrial functions are regulated may allow development of therapies to enhance mitochondrial functions in these and other diseases.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Integrative Physiology of Obesity and Diabetes Study Section (IPOD)
Program Officer
Anderson, Vernon
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Michigan Ann Arbor
Schools of Medicine
Ann Arbor
United States
Zip Code
Lombard, David B; Zwaans, Bernadette M M (2014) SIRT3: as simple as it seems? Gerontology 60:56-64
Hong, Sungki; Zhao, Bin; Lombard, David B et al. (2014) Cross-talk between sirtuin and mammalian target of rapamycin complex 1 (mTORC1) signaling in the regulation of S6 kinase 1 (S6K1) phosphorylation. J Biol Chem 289:13132-41
Zwaans, Bernadette M M; Lombard, David B (2014) Interplay between sirtuins, MYC and hypoxia-inducible factor in cancer-associated metabolic reprogramming. Dis Model Mech 7:1023-32
Tan, Minjia; Peng, Chao; Anderson, Kristin A et al. (2014) Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab 19:605-17
Giblin, William; Skinner, Mary E; Lombard, David B (2014) Sirtuins: guardians of mammalian healthspan. Trends Genet 30:271-86
Park, Jeongsoon; Chen, Yue; Tishkoff, Daniel X et al. (2013) SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell 50:919-30
Wirth, Martina; Karaca, Samir; Wenzel, Dirk et al. (2013) Mitochondrial SIRT4-type proteins in Caenorhabditis elegans and mammals interact with pyruvate carboxylase and other acetylated biotin-dependent carboxylases. Mitochondrion 13:705-20
Li, Yu; Silva, Jeffrey C; Skinner, Mary E et al. (2013) Mass spectrometry-based detection of protein acetylation. Methods Mol Biol 1077:81-104