We propose to develop a computational model of a complete cellular protein homeostasis (proteostasis) network, including protein synthesis, degradation, folding stability, aggregation, and competing/cooperating chaperoning systems. This project is a collaboration between Lila Gierasch (University of Massachusetts Amherst) and Evan Powers (The Scripps Research Institute). Our model, called FoldEco, aims to describe the balance of biochemical and physical aspects of folding and aggregation, and their impact on the """"""""health"""""""" of the proteins in proteomes in general, and here the proteome of the E. coli cytoplasm, in particular. FoldEco begins with the current extensive knowledge of mechanisms, biochemical circuits, and parameters, and allows for the generation of hypotheses about large-scale, complex protein folding networks under various conditions. We propose now: (1) to advance FoldEco so that it better captures the full complexity of the E. coli proteome as well as physiological processes such as the heat-shock regulatory response that play a role in proteostasis in E. coli;(2) to experimentally interrogate E. coli proteostasis under physiological conditions in order to test and ultimately improve the FoldEco model. As part of our work, we will be addressing the burden placed on the proteome by perturbation of individual proteins, how well the proteostasis network copes with such perturbations, and whether some proteins are particularly vulnerable to such perturbations. We will continue to make the FoldEco model freely available to the broad community through a web-based interface. We already have the FoldEco code in a first generation version and several experimental tests of predictions of the code. Because chaperone networks are conserved across all organisms, this work in the simple model organism, E. coli, will provide insight into protein homeostasis in higher organisms and potentially assist in the development of therapeutic strategies for protein misfolding diseases. Additionally, FoldEco will benefit the biotechnological and pharmaceutical industries where the need to produce functional proteins efficiently is critical. If successful, this work will broadly advance our ability to comprehend complex circuits that play critical roles in health and disease.

Public Health Relevance

Cellular health depends on the proper balance of protein synthesis, quality control and degradation, all of which are maintained by the complex machinery called the proteostasis network. Proteostasis is a key player in longevity and aging, and its failure is implicated in many diseases, including Alzheimer's, Parkinson's, type II diabetes, cystic fibrosis, and some cancers. To determine how physical forces and stresses such as heat shock affect this complex process, we are developing a computational model of the complete proteostasis network in the simple organism, Escherichia coli, and in so doing gaining deeper understanding of proteostasis in healthy, diseased or aging cells.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
1R01GM101644-01A1
Application #
8560963
Study Section
Macromolecular Structure and Function B Study Section (MSFB)
Program Officer
Brazhnik, Paul
Project Start
2013-09-05
Project End
2017-08-31
Budget Start
2013-09-05
Budget End
2014-08-31
Support Year
1
Fiscal Year
2013
Total Cost
$423,475
Indirect Cost
$83,061
Name
University of Massachusetts Amherst
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
153926712
City
Amherst
State
MA
Country
United States
Zip Code
01003
Thakur, Abhay K; Meng, Wenli; Gierasch, Lila M (2018) Local and non-local topological information in the denatured state ensemble of a ?-barrel protein. Protein Sci 27:2062-2072
Morgan, Gareth J; Burkhardt, David H; Kelly, Jeffery W et al. (2018) Translation efficiency is maintained at elevated temperature in Escherichia coli. J Biol Chem 293:777-793
Hingorani, Karan S; Metcalf, Matthew C; Deming, Derrick T et al. (2017) Ligand-promoted protein folding by biased kinetic partitioning. Nat Chem Biol 13:369-371
Medus, Máximo Lopez; Gomez, Gabriela E; Zacchi, Lucía F et al. (2017) N-glycosylation Triggers a Dual Selection Pressure in Eukaryotic Secretory Proteins. Sci Rep 7:8788
Clerico, Eugenia M; Tilitsky, Joseph M; Meng, Wenli et al. (2015) How hsp70 molecular machines interact with their substrates to mediate diverse physiological functions. J Mol Biol 427:1575-88
Cho, Younhee; Zhang, Xin; Pobre, Kristine Faye R et al. (2015) Individual and collective contributions of chaperoning and degradation to protein homeostasis in E. coli. Cell Rep 11:321-33
Eisele, Yvonne S; Monteiro, Cecilia; Fearns, Colleen et al. (2015) Targeting protein aggregation for the treatment of degenerative diseases. Nat Rev Drug Discov 14:759-80
Theillet, Francois-Xavier; Binolfi, Andres; Frembgen-Kesner, Tamara et al. (2014) Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chem Rev 114:6661-714
Chien, Peter; Gierasch, Lila M (2014) Challenges and dreams: physics of weak interactions essential to life. Mol Biol Cell 25:3474-7
Gershenson, Anne; Gierasch, Lila M; Pastore, Annalisa et al. (2014) Energy landscapes of functional proteins are inherently risky. Nat Chem Biol 10:884-91

Showing the most recent 10 out of 11 publications