The Stat transcription factors play pivotal roles in controlling the expression of genes involved in immune responses, cell transformation and maintaining homeostasis. Published results from this lab demonstrate that there is a pool of Stat3 that is localized in the mitochondria (mitoStat3) where it functions to control cellular respiration both in cells and in cardiac tissue. Preliminary results with a transgenic mice that express Stat3 that is targeted heart mitochondria indicate that it the transgenic protein protects hearts from ischemia induced decreases in the activity of complex I of the electron transport chain, production of reactive oxygen species (ROS) from mitochondria and release of cytochrome C from the mitochondria. Preliminary results in this proposal also define a new function of Stat1 as a repressor of mitochondrial gene expression. In addition, Stat1 represses the transcription of nuclear RNAs that encode components of the electron transport chain. It appears that the actions of Stat1 might antagonize the effects of Stat3 in regulation of mitochondrial homeostasis as well as their well knows opposing actions on cell growth and inflammation. Experiments are proposed to define the contribution of mitoStat3 to the cardio-protective effects of this transcription factor in acute and chronic models of heart injury. Since the mechanisms by which Stat1 represses mitochondrial transcription leading to decreased mitochondria function appear to oppose the effects of mitoStat3, we will examine if mitochondrial targeted Stat3 transgenes show enhanced protection in a Stat1-/- background. Completion of these studies will elucidate a mitochondria-nuclear signaling network that is regulated by Stat3's location in the both the nucleus and mitochondria.

Public Health Relevance

Heart disease is one of the primary causes of mortality and morbidity in the United States. The transcription factor Stat3 plays a major role in maintaining normal heart function, and loss of Stat3 either in mice or humans causes severe cardiac dysfunction, especially under conditions of stress. In this proposal we will determine the contribution to heart function of a small pool of Stat3 that is located in the mitochondria and regulates oxidative metabolism, with the goal of better understanding of how Stat3 regulates respiration, providing a new target that can be the manipulated to maintain cardiac health under conditions of stress such as heart attacks.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM101677-02
Application #
8461525
Study Section
Molecular and Integrative Signal Transduction Study Section (MIST)
Program Officer
Anderson, Vernon
Project Start
2012-05-01
Project End
2016-04-30
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
2
Fiscal Year
2013
Total Cost
$274,108
Indirect Cost
$90,758
Name
Virginia Commonwealth University
Department
Biochemistry
Type
Schools of Medicine
DUNS #
105300446
City
Richmond
State
VA
Country
United States
Zip Code
23298
Meier, Jeremy A; Larner, Andrew C (2014) Toward a new STATe: the role of STATs in mitochondrial function. Semin Immunol 26:20-8
Zhang, Qifang; Raje, Vidisha; Yakovlev, Vasily A et al. (2013) Mitochondrial localized Stat3 promotes breast cancer growth via phosphorylation of serine 727. J Biol Chem 288:31280-8
Ross, Thomas; Szczepanek, Karol; Bowler, Elizabeth et al. (2013) Reverse electron flow-mediated ROS generation in ischemia-damaged mitochondria: role of complex I inhibition vs. depolarization of inner mitochondrial membrane. Biochim Biophys Acta 1830:4537-42