There is a fundamental paradox within the nucleus of every eukaryotic cell: The genetic material must be organized and compacted yet remain accessible for readout by transcription machinery. Two of the many factors that retain this balance are histones and histone binding proteins. Histones are ultimately responsible for compacting the chromosomal DNA almost 500,000-fold to fit into the nucleus. While genome accessibility is regulated in part by the actions of histone acetyltransferases (KATs), histone chaperones interact directly with histones and can assemble and/or disassemble them on DNA. KATs covalently modify the histones and therefore have the potential to alter chromatin structure. Exciting new evidence structurally and functionally link KATs and histone chaperones. However, virtually nothing is known about the mechanisms by which these proteins cooperate to manage compaction and genome accessibility. To begin to understand this important biological question, this project proposes to study the histone acetyltransferase (KAT) Rtt109 as a model system. Rtt109 employs two structurally unrelated histone chaperones, Vps75 and Asf1. In vivo, Vps75 has been shown to directly interact with Rtt109, but only Asf1 is required for Rtt109 function. Both chaperones activate Rtt109 acetyltransferase activity in vitro, but Rtt109 acetylates histones in multiple locations, and Vps75 and Asf1 appear to alter Rtt109 specificity. A biochemical and molecular understanding of how specificity and selectivity is achieved is currently a major challenge in the chromatin field. This project will employ and expand on new methodologies for studying complex protein-protein networks needed to regulate chromatin dynamics and post-translational specificity.

Public Health Relevance

Regulation of gene expression and chromatin dynamics by epigenetic factors such as histone modification has shown promise in the treatment of many of the major human diseases. Limiting the success of anti- modification drugs has been a lack of knowledge on how modification enzymes differentiate substrates and how their ability to modify multiple positions on a single substrate is regulated. Knowledge of this mechanism will provide unprecedented insight into genome regulation, facilitating new therapies that target specific sites by altering selectivity, which would be a significant improvement over current enzyme inhibition approaches.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
3R01GM102503-01A1S1
Application #
9025255
Study Section
Program Officer
Preusch, Peter
Project Start
2014-09-15
Project End
2019-07-31
Budget Start
2014-09-15
Budget End
2015-07-31
Support Year
1
Fiscal Year
2015
Total Cost
$100,000
Indirect Cost
Name
Research Institute of Fox Chase Cancer Center
Department
Type
DUNS #
064367329
City
Philadelphia
State
PA
Country
United States
Zip Code
19111
Duong-Ly, Krisna C; Kuo, Yin-Ming; Johnson, Matthew C et al. (2018) T cell activation triggers reversible inosine-5'-monophosphate dehydrogenase assembly. J Cell Sci 131:
Schuetze, Katherine B; Stratton, Matthew S; Blakeslee, Weston W et al. (2017) Overlapping and Divergent Actions of Structurally Distinct Histone Deacetylase Inhibitors in Cardiac Fibroblasts. J Pharmacol Exp Ther 361:140-150
Carrer, Alessandro; Parris, Joshua L D; Trefely, Sophie et al. (2017) Impact of a High-fat Diet on Tissue Acyl-CoA and Histone Acetylation Levels. J Biol Chem 292:3312-3322
Lee, Hyung-Ok; Wang, Liqun; Kuo, Yin-Ming et al. (2017) Lack of global epigenetic methylation defects in CBS deficient mice. J Inherit Metab Dis 40:113-120
Anthony, Sajitha A; Burrell, Anika L; Johnson, Matthew C et al. (2017) Reconstituted IMPDH polymers accommodate both catalytically active and inactive conformations. Mol Biol Cell :
Zhao, Steven; Torres, AnnMarie; Henry, Ryan A et al. (2016) ATP-Citrate Lyase Controls a Glucose-to-Acetate Metabolic Switch. Cell Rep 17:1037-1052
Henry, Ryan A; Mancuso, Pietro; Kuo, Yin-Ming et al. (2016) Interaction with the DNA Repair Protein Thymine DNA Glycosylase Regulates Histone Acetylation by p300. Biochemistry 55:6766-6775
Zucconi, Beth E; Luef, Birgit; Xu, Wei et al. (2016) Modulation of p300/CBP Acetylation of Nucleosomes by Bromodomain Ligand I-CBP112. Biochemistry 55:3727-34
Kuo, Yin-Ming; Henry, Ryan A; Andrews, Andrew J (2016) Measuring specificity in multi-substrate/product systems as a tool to investigate selectivity in vivo. Biochim Biophys Acta 1864:70-6
Henry, Ryan A; Singh, Tanu; Kuo, Yin-Ming et al. (2016) Quantitative Measurement of Histone Tail Acetylation Reveals Stage-Specific Regulation and Response to Environmental Changes during Drosophila Development. Biochemistry 55:1663-72

Showing the most recent 10 out of 13 publications