General anesthesia is a reversible, drug-induced behavioral state comprised of unconsciousness, amnesia, analgesia and immobility with stability and control of vital physiological systems. This fundamental tool of modern medicine is crucial for allowing thousands of patients daily to safely undergo most surgical and many non-surgical procedures. Today this state is induced and maintained by administering multiple drugs that act at multiple sites in the brain and central nervous system. Emergence from general anesthesia is a passive process whereby anesthetic drugs are merely discontinued at the end of surgery and no drugs are administered to actively reverse their effects. Allowing multiple drugs to act at multiple sites without specific mechanisms to terminate their effects most likely explains a significant component of anesthesia-related morbidity;drug side effects (nausea, hypotension, respiratory depression, hypothermia) are due to actions at sites other than their intended targets whereas persistent effects (delirium, cognitive dysfunction) are due to actions at intended targets for periods longer than desired. Hence, general anesthesia, as presently produced, is highly non-specific and inefficient. Despite the central role of anesthesiology in modern healthcare, research in this field is overly focused on deciphering the anesthetic and toxic mechanisms of current drugs with little to no attention being paid to developing new approaches. The paradigm-shifting question whose answer will revolutionize anesthesiology is not, """"""""how do current anesthetics work?"""""""", but rather, """"""""how should the state of general anesthesia be designed?"""""""" We hypothesize that the answer is by developing strategies to control directly the brain's natural inhibitory pathways and arousal centers. We propose to redesign general anesthesia by combining optogenetic, electrical and pharmacological manipulations in rodent models to create this behavioral state through precisely timed control of the brain's natural inhibitory pathways and its arousal centers. If successful this research will provide a new fundamental understanding of brain arousal control, and eventually, new anesthesiology practices including: neurophysiologically-designed approaches to creating general anesthesia;reduction in morbidity;improved brain function monitoring;safer anesthesia care by non-anesthesiologists;and possibly novel therapies for arousal disorders such as depression, insomnia, pain and coma.

Public Health Relevance

In the United States, more than 100,000 patients receive general anesthesia daily to safely undergo most surgical and many non-surgical procedures Use of anesthetic drugs by non-anesthesiologists in intensive care units and outpatient settings continues to grow. At the same time, anesthesia-related morbidity, including intra-operative awareness, altered neurological development and delirium in children and cognitive dysfunction in the elderly remains a significant problem. Despite the central role of anesthesiology in modern healthcare, research in this field is stagnant;overly focused on deciphering the anesthetic and toxic mechanisms of current drugs with no attention to developing new approaches. We propose to redesign general anesthesia by combining optogenetic, electrical and pharmacological manipulations in rodent models to create this behavioral state through precisely timed control of the brain's natural inhibitory pathways and its arousal centers. If successful this research will provide a new fundamental understanding of brain arousal control, and eventually, new anesthesiology practices including: neurophysiologically-designed approaches to creating general anesthesia;reduction in morbidity;improved brain function monitoring;safer anesthesia care by non- anesthesiologists;and possibly novel therapies for arousal disorders such as depression, insomnia, pain and coma.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
3R01GM104948-03S1
Application #
8848624
Study Section
Special Emphasis Panel (ZRG1 (51))
Program Officer
Cole, Alison E
Project Start
2012-09-25
Project End
2017-08-31
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
3
Fiscal Year
2014
Total Cost
$92,904
Indirect Cost
$33,350
Name
Massachusetts Institute of Technology
Department
Other Basic Sciences
Type
Schools of Arts and Sciences
DUNS #
001425594
City
Cambridge
State
MA
Country
United States
Zip Code
02142
Tillberg, Paul W; Chen, Fei; Piatkevich, Kiryl D et al. (2016) Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat Biotechnol 34:987-92
Krishnaswamy, Pavitra; Bonmassar, Giorgio; Poulsen, Catherine et al. (2016) Reference-free removal of EEG-fMRI ballistocardiogram artifacts with harmonic regression. Neuroimage 128:398-412
Glantz, Spencer T; Carpenter, Eric J; Melkonian, Michael et al. (2016) Functional and topological diversity of LOV domain photoreceptors. Proc Natl Acad Sci U S A 113:E1442-51
Linderman, Scott W; Johnson, Matthew J; Wilson, Matthew A et al. (2016) A Bayesian nonparametric approach for uncovering rat hippocampal population codes during spatial navigation. J Neurosci Methods 263:36-47
Akeju, Oluwaseun; Hamilos, Allison E; Song, Andrew H et al. (2016) GABAA circuit mechanisms are associated with ether anesthesia-induced unconsciousness. Clin Neurophysiol 127:2472-81
Kenny, Jonathan D; Chemali, Jessica J; Cotten, Joseph F et al. (2016) Physostigmine and Methylphenidate Induce Distinct Arousal States During Isoflurane General Anesthesia in Rats. Anesth Analg 123:1210-1219
Pavone, Kara J; Akeju, Oluwaseun; Sampson, Aaron L et al. (2016) Nitrous oxide-induced slow and delta oscillations. Clin Neurophysiol 127:556-64
Taylor, Norman E; Van Dort, Christa J; Kenny, Jonathan D et al. (2016) Optogenetic activation of dopamine neurons in the ventral tegmental area induces reanimation from general anesthesia. Proc Natl Acad Sci U S A :
Akeju, Oluwaseun; Song, Andrew H; Hamilos, Allison E et al. (2016) Electroencephalogram signatures of ketamine anesthesia-induced unconsciousness. Clin Neurophysiol 127:2414-22
Chemali, J J; Kenny, J D; Olutola, O et al. (2015) Ageing delays emergence from general anaesthesia in rats by increasing anaesthetic sensitivity in the brain. Br J Anaesth 115 Suppl 1:i58-i65

Showing the most recent 10 out of 55 publications