Dense core granules are vesicles that store and release bioactive peptides, and are found throughout most eukaryotes. Over the past two decades, detailed models have been developed to explain protein targeting to secretory granules. The most fundamental aspect of these models is that protein sorting in this pathway does not rely on canonical transmembrane receptors or receptor adaptors. However, recent experiments in mammalian neurons led to the surprising finding that bone-derived neurotropic factor (BDNF), a peptide important for neuronal maintenance, is targeted to secretory granules in a pathway, as yet undescribed, that involves a classical lysosomal sorting receptor, sortilin. Moreover, sortilin-family receptor variants have been identified as risk factors for diabetes, and recent work suggests they play a direct role in formation of insulin-containing granules. Another challenge came from recent studies in Drosophila, and in mammalian neuroendocrine cells, which implicated the AP-3 adaptor complex in secretory granule formation. No current model explains the sortilin or AP-3 data. Secretory granules are a prominent feature in the ciliate Tetrahymena thermophila. By studying gene expression during periods of active granule synthesis, it was recently discovered that the Tetrahymena sortilin homologs are highly upregulated under these conditions, in combination with a set of genes that are proposed to underlie secretory granule formation. Those gene products include putative sortilin ligands as well as AP-3 adaptors and other cytoplasmic machinery that is likely to be involved in sortilin trafficking. Preliminary data validate the value of this gene expression-based approach to uncovering mechanisms involved in granulogenesis, and demonstrate that sorting of major classes of granule proteins in Tetrahymena requires sortilins. The proposal is therefore aimed at understanding how sortilins facilitate protein targeting to granules, and what other cellular machinery is involved. To that end, the aims of this proposal include the analysis of sortilin ligands and of adapter proteins that interact with sortilin cytoplasmic domains.

Public Health Relevance

Dense core secretory granules are responsible for storage and release of many key peptides involved in tissue coordination. Recent results indicate that the mechanisms involved in sorting proteins to secretory granules are more complex than currently understood, and in particular that defects in unknown mechanisms must underlie several human conditions associated with impaired neuronal maintenance and memory, as well as diabetes. It is proposed that these important mechanisms can be uncovered by taking advantage of a simple system, the single-celled organism Tetrahymena thermophila, in which a similar process of secretory granule formation can be effectively studied using a novel approach.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Membrane Biology and Protein Processing Study Section (MBPP)
Program Officer
Ainsztein, Alexandra M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Chicago
Schools of Medicine
United States
Zip Code
de Francisco, Patricia; Martín-González, Ana; Turkewitz, Aaron P et al. (2018) Genome plasticity in response to stress in Tetrahymena thermophila: selective and reversible chromosome amplification and paralogous expansion of metallothionein genes. Environ Microbiol 20:2410-2421
Sparvoli, Daniela; Richardson, Elisabeth; Osakada, Hiroko et al. (2018) Remodeling the Specificity of an Endosomal CORVET Tether Underlies Formation of Regulated Secretory Vesicles in the Ciliate Tetrahymena thermophila. Curr Biol 28:697-710.e13
Luo, Guan-Zheng; Hao, Ziyang; Luo, Liangzhi et al. (2018) N6-methyldeoxyadenosine directs nucleosome positioning in Tetrahymena DNA. Genome Biol 19:200
Kaur, Harsimran; Sparvoli, Daniela; Osakada, Hiroko et al. (2017) An endosomal syntaxin and the AP-3 complex are required for formation and maturation of candidate lysosome-related secretory organelles (mucocysts) inTetrahymena thermophila. Mol Biol Cell 28:1551-1564
Guerrier, Sabrice; Plattner, Helmut; Richardson, Elisabeth et al. (2017) An evolutionary balance: conservation vs innovation in ciliate membrane trafficking. Traffic 18:18-28
Tsypin, Lev M; Turkewitz, Aaron P (2017) The Co-regulation Data Harvester: automating gene annotation starting from a transcriptome database. SoftwareX 6:165-171
Klinger, Christen M; Ramirez-Macias, Inmaculada; Herman, Emily K et al. (2016) Resolving the homology-function relationship through comparative genomics of membrane-trafficking machinery and parasite cell biology. Mol Biochem Parasitol 209:88-103
Kumar, Santosh; Briguglio, Joseph S; Turkewitz, Aaron P (2015) Secretion of Polypeptide Crystals from Tetrahymena thermophila Secretory Organelles (Mucocysts) Depends on Processing by a Cysteine Cathepsin, Cth4p. Eukaryot Cell 14:817-33
Lynch, Michael; Field, Mark C; Goodson, Holly V et al. (2014) Evolutionary cell biology: two origins, one objective. Proc Natl Acad Sci U S A 111:16990-4
Briguglio, Joseph S; Turkewitz, Aaron P (2014) Tetrahymena thermophila: a divergent perspective on membrane traffic. J Exp Zool B Mol Dev Evol 322:500-16