Small molecule drugs are the cornerstone of modern medical practice. However, their use is plagued by the onset of unexpected side effects, often seen only in late-stage clinical trials or after release to the market. As a result, there have bee a number of high profile drug withdrawals and a dearth of new drug development. Characterizing the combinatorial effects of drug treatment is of particular concern. It is very difficult to empirically study these interactions before drugs enter the market because of the small samples of co- prescribed drugs in most late stage clinical drug (Phase III) studies. Some interactions can be predicted based on knowledge of shared pathways of metabolism, but many are idiosyncratic and difficult to predict. Thus, we must create surveillance methods to detect unexpected drug effects and interactions that leverage the power of large-scale clinical databases such as the electronic health records. Mining of electronic health record data for the purpose of identifying adverse drug effects is an increasingly important research challenge. For example, in response to a congressional mandate the Food and Drug Administration (FDA) established the mini-sentinel initiative in 2009 -- a pilot study that links claims and administratve data from over 31 institutions for the purpose of monitoring drug safety surveillance. In addition, public-private partnerships (e.g. the Observational Medical Outcomes Partnership) have sprouted to establish data management and analysis standards for safety surveillance. However, the potential of the EHR for drug surveillance is paralleled by an equal number of challenges. Many of these challenges are in the quality (or rather lack thereof) of data when used for secondary analyses. Data stored in the EHR are often dirty, noisy, and missing. In addition to issues regarding data capture, these data also suffer from bias which confounds analysis and makes data mining results difficult to interpret. These issues become especially acute in the context of combination therapies where the exposed patient cohorts are often small and suffer from unknown (i.e. unstudied) biases. In this proposal we present a drug safety surveillance strategy which integrates state-of-the-art signal detection algorithms with chemical systems biology data for the purpose of identifying unexpected effects of combination therapies. We present an integrative methodology which combines quantitative signal detection and chemical systems biology to mine drug effects from a large clinical database. This will require innovations in observational statistical data mining, network analysis, and integrative chemical systems biology. The result will be a set of tools for discovering drug effects and linking them to molecular interaction networks. These resources will aid federal regulators to better monitor the safety of drugs at the population level, pharmacologists who wish to understand the effects of drugs at the physiological level, and drug development researchers to explore new treatments of human disease.

Public Health Relevance

Small molecule drugs are the cornerstone of medical-practice yet their use and development is limited by occurrence unexpected effects and interactions. Adverse events that occur when multiple drugs are taken at once are of particular concern since they are not studied pre-clinically and can have significant health consequences. In this proposal we present a integrating methodology that combines quantitative signal detection and chemical systems biology to study the effects of drugs. We focus on identifying and validating novel adverse events due to combination therapy. The resources and knowledge we produce will enable the development of predictive models of drug effects and potentially the design of safer therapies.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Biodata Management and Analysis Study Section (BDMA)
Program Officer
Long, Rochelle M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Columbia University (N.Y.)
Internal Medicine/Medicine
Schools of Medicine
New York
United States
Zip Code
Manrai, Arjun K; Patel, Chirag J; Gehlenborg, Nils et al. (2016) METHODS TO ENHANCE THE REPRODUCIBILITY OF PRECISION MEDICINE. Pac Symp Biocomput 21:180-2
Li, Li; Boland, Mary Regina; Miotto, Riccardo et al. (2016) Replicating Cardiovascular Condition-Birth Month Associations. Sci Rep 6:33166
Kidd, Brian A; Wroblewska, Aleksandra; Boland, Mary R et al. (2016) Mapping the effects of drugs on the immune system. Nat Biotechnol 34:47-54
Banda, Juan M; Evans, Lee; Vanguri, Rami S et al. (2016) A curated and standardized adverse drug event resource to accelerate drug safety research. Sci Data 3:160026
Boland, Mary Regina; Jacunski, Alexandra; Lorberbaum, Tal et al. (2016) Systems biology approaches for identifying adverse drug reactions and elucidating their underlying biological mechanisms. Wiley Interdiscip Rev Syst Biol Med 8:104-22
Gayvert, Kaitlyn M; Dardenne, Etienne; Cheung, Cynthia et al. (2016) A Computational Drug Repositioning Approach for Targeting Oncogenic Transcription Factors. Cell Rep 15:2348-56
Lorberbaum, Tal; Sampson, Kevin J; Woosley, Raymond L et al. (2016) An Integrative Data Science Pipeline to Identify Novel Drug Interactions that Prolong the QT Interval. Drug Saf 39:433-41
Hoffman, Keith B; Dimbil, Mo; Tatonetti, Nicholas P et al. (2016) A Pharmacovigilance Signaling System Based on FDA Regulatory Action and Post-Marketing Adverse Event Reports. Drug Saf 39:561-75
Romano, Joseph D; Tatonetti, Nicholas P (2016) Using a Novel Ontology to Inform the Discovery of Therapeutic Peptides from Animal Venoms. AMIA Jt Summits Transl Sci Proc 2016:209-18
Boland, Mary Regina; Tatonetti, Nicholas P (2016) In Search of 'Birth Month Genes': Using Existing Data Repositories to Locate Genes Underlying Birth Month-Disease Relationships. AMIA Jt Summits Transl Sci Proc 2016:189-98

Showing the most recent 10 out of 30 publications