Theory has shown that spatial structure is crucially important in driving virulence evolution: when hosts are more likely to transmit disease exclusively to close neighbors (i.e. local transmission), parasites are expected to evolve lower virulence than when hosts are likely to infect remote individuals (i.e. global transmission). However, this theory remains untested in a real-life field system. This proposal takes advantage of honeybees (Apis mellifera) and their destructive parasitic mites (Varroa destructor) to study the role of spatial structure in virulence evolution. Varroa mites are the single largest cause of honeybee colony losses worldwide, and beekeeping practices are likely to drive this parasite's virulence by routinely altering transmission conditions and population structure. Intensive beekeeping increases global mite transmission and thus has the potential to unintentionally select for devastating parasites. This proposal has three specific aims: (1) an experimental evolution study at an unprecedented scale, which will vary the relative importance of local versus global mite transmission to determine how this affects virulence evolution;(2) development of virulence evolution models to study the role of spatial structure in agricultural systems, which will be applied to the honeybee-Varroa system to make specific recommendations on beekeeping practices to prevent selection of high virulence;and (3) a large scale cross-infection experiment to test whether current beekeeping practices have selected for higher virulence, which will compare mites from intensively managed, lightly managed and feral bees. The combination of large-scale field experiments and theory development on the tractable system of bees and mites will be powerful in developing important insights in the role of spatial structure and host heterogeneity in disease transmission, epidemiology and evolution.

Public Health Relevance

The increased mobility of agricultural animals and humans is resulting in a shrinking world in which disease transmission is becoming more global. This proposal will determine the extent to which this global transmission selects for parasites that cause greater reductions of host health. It will have general relevance to understanding virulence evolution and provide guidelines to reduce virulence of honeybee parasites.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-IDM-U (55))
Program Officer
Eckstrand, Irene A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Emory University
Schools of Arts and Sciences
United States
Zip Code
Johnson, Pieter T J; Wood, Chelsea L; Joseph, Maxwell B et al. (2016) Habitat heterogeneity drives the host-diversity-begets-parasite-diversity relationship: evidence from experimental and field studies. Ecol Lett 19:752-61
Dynes, Travis L; De Roode, Jacobus C; Lyons, Justine I et al. (2016) Fine scale population genetic structure of Varroa destructor, an ectoparasitic mite of the honey bee (Apis mellifera). Apidologie 2016:1-9
Bushman, Mary; Morton, Lindsay; Duah, Nancy et al. (2016) Within-host competition and drug resistance in the human malaria parasite Plasmodium falciparum. Proc Biol Sci 283:20153038
Nolan 4th, Maxcy P; Delaplane, Keith S (2016) Distance Between Honey Bee Apis mellifera Colonies Regulates Populations of Varroa destructor at a Landscape Scale. Apidologie 2016:1-9
Johnson, Pieter T J; de Roode, Jacobus C; Fenton, Andy (2015) Why infectious disease research needs community ecology. Science 349:1259504