The molecular chaperones, Hsp70 and Hsp90 bind to unfolded proteins (e.g. clients) and recruit either pro-folding or pro-degradation co-chaperones, generating a series of distinct multi- protein complexes that either fold or degrade the bound protein. For some important clients, such as microtubule-binding protein tau (MAPT/tau), a key step in the choice to degrade seems to be the dynamic recruitment of the E3 ubiquitin conjugating ligase CHIP, which couples both Hsp70 and Hsp90 to the ubiquitin-proteasome system (UPS). However, little is known about the molecular events that govern CHIP assembly into the complex and we do not yet understand why some disease-associated proteins, such as hyper-phosphorylated tau, evade this process. Progress towards understanding how clients are loaded into the pro-degradation complex has been hindered by a lack of structural information, the dynamic nature of the protein-protein interactions and the difficulties of linking in vitro findings with cellular functions. We hypothesize that a rigorous ad comprehensive understanding of protein triage will emerge from a combination of chemical crosslinking-mass spectrometry (CXL-MS), cryo-electron microscopy (cryo-EM) and new chemical probes that trigger an acute switch to the pro- degradation complex. Guided by strong preliminary results, we will: (SA1) generate a complete CXL-MS signature of the Hsp70-CHIP-tau and Hsp90-CHIP-tau complexes and map their protein-protein contacts in vitro and in intact neuronal cells, (SA2) use these signatures, chemical probes and mass spectrometry to understand how the complexes form and how they recruit CHIP and other effectors of the UPS during active triage in the cytosol and (SA3) elucidate the macromolecular architecture of the chaperone complexes to, for the first time, link cellular observations with careful measurements of protein-protein contacts in vitro. This work is significant because it will reveal changes in th composition of macromolecular complexes that drive active protein triage and it is innovative because it links powerful in vitro approaches with new chemical probes and CXL-MS to address one of the key questions in cellular protein homeostasis. Moreover, the proposed work brings together a continuum of research expertise in structural, chemical and cellular approaches to the study of dynamic protein-protein interactions.

Public Health Relevance

Many serious and untreatable disorders, including Alzheimer's and Huntington's diseases are caused by defects in protein triage and the aberrant accumulation of misfolded proteins. To better treat these diseases, it is important to better understand the molecular mechanisms by which chaperones control protein homeostasis. EDITOR'S COMMENTS

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM109896-02
Application #
8853890
Study Section
Special Emphasis Panel (ZGM1-TRN-0 (MI))
Program Officer
Edmonds, Charles G
Project Start
2014-06-01
Project End
2018-02-28
Budget Start
2015-03-01
Budget End
2016-02-29
Support Year
2
Fiscal Year
2015
Total Cost
$267,818
Indirect Cost
$88,025
Name
University of Michigan Ann Arbor
Department
Biochemistry
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Hagen, Susan E; Liu, Kun; Jin, Yafei et al. (2018) Synthesis of CID-cleavable protein crosslinking agents containing quaternary amines for structural mass spectrometry. Org Biomol Chem 16:8245-8248
Freilich, Rebecca; Arhar, Taylor; Abrams, Jennifer L et al. (2018) Protein-Protein Interactions in the Molecular Chaperone Network. Acc Chem Res 51:940-949
Young, Zapporah T; Mok, Sue Ann; Gestwicki, Jason E (2018) Therapeutic Strategies for Restoring Tau Homeostasis. Cold Spring Harb Perspect Med 8:
Gates, Stephanie N; Yokom, Adam L; Lin, JiaBei et al. (2017) Ratchet-like polypeptide translocation mechanism of the AAA+ disaggregase Hsp104. Science 357:273-279
Rauch, Jennifer N; Tse, Eric; Freilich, Rebecca et al. (2017) BAG3 Is a Modular, Scaffolding Protein that physically Links Heat Shock Protein 70 (Hsp70) to the Small Heat Shock Proteins. J Mol Biol 429:128-141
Young, Zapporah T; Rauch, Jennifer N; Assimon, Victoria A et al. (2016) Stabilizing the Hsp70-Tau Complex Promotes Turnover in Models of Tauopathy. Cell Chem Biol 23:992-1001
Guan, Shenheng; Trnka, Michael J; Bushnell, David A et al. (2015) Deconvolution method for specific and nonspecific binding of ligand to multiprotein complex by native mass spectrometry. Anal Chem 87:8541-6
Assimon, Victoria A; Southworth, Daniel R; Gestwicki, Jason E (2015) Specific Binding of Tetratricopeptide Repeat Proteins to Heat Shock Protein 70 (Hsp70) and Heat Shock Protein 90 (Hsp90) Is Regulated by Affinity and Phosphorylation. Biochemistry 54:7120-31