Post-translational modifications (PTMs) to histone proteins constitute a major type of epigenetic mechanism that regulates chromatin structure and gene expression patterns in eukaryotes. In addition to their important roles in standard physiology, disruptions in histone PTM signaling patterns have been suggested to be significant, potentially causative factors in various human diseases such as cancer. As most histone PTM work in the chromatin biology field is accomplished using site-specific antibodies, the quantitative measurement of combinational histone PTMs co-occurring on the same molecule has been unmet. Our objectives include the continued development of mass spectrometry-based proteomics and bioinformatic methods for quantitatively interrogating combinatorial histone PTM patterns, and applying these approaches to investigate histone mediated epigenetics mechanisms behind key areas of health related biological research. Here we will specifically apply our approaches to investigate epigenetic histone PTM signaling during human embryonic stem cell differentiation.
Our specific aims are three in number and include identifying changing histone PTMs during stem cell differentiation, characterizing combinatorial histone PTM binding protein complexes that translate these PTM patterns, and determining the role of these combinatorial PTMs in maintaining the pluripotent state or facilitating to a specific lineage We expect that these comprehensive proteomic strategies will continue to generate new tools to study epigenetic histone PTMs and generate novel insights into the mechanism of combinatorial histone PTMs in gene regulation during diverse biological events such as cellular differentiation.

Public Health Relevance

Histone post-translational modifications (PTMs) are an intensely investigated research field and alterations in these PTM patterns have been suggested to play roles in the pathology of some diseases, or in developmental biology. This research will help establish the role of these PTMs in human biology, and will impact areas such as regenerative medicine and cancer biology, thus laying down the foundation for potential development of epigenetic therapy.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
1R01GM110174-01
Application #
8672940
Study Section
Enabling Bioanalytical and Imaging Technologies Study Section (EBIT)
Program Officer
Edmonds, Charles G
Project Start
2014-08-15
Project End
2018-07-31
Budget Start
2014-08-15
Budget End
2015-07-31
Support Year
1
Fiscal Year
2014
Total Cost
$304,000
Indirect Cost
$114,000
Name
University of Pennsylvania
Department
Biochemistry
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104