The objective of this proposal is to determine how stress granules (SGs), components of an integrated stress response program implicated in the pathogenesis of cancer, neurodegenerative disease, and virus infection, enhance the survival of cells exposed to adverse environmental conditions. Our central hypothesis is that SGs constitute RNA-centric signaling hubs analogous to classical multiprotein signaling complexes (e.g., lipid rafts, transmembrane receptor signaling complexes), and that SG assembly communicates a state of emergency by intercepting and sequestering components of multiple signaling pathways. This is based upon recent results showing that signaling proteins possessing low complexity (LC)/intrinsically disordered (ID) aggregation regions are recruited to SGs thereby altering major signaling pathways that modulate survival. The rationale for this research is that, once we know how SGs recruit signaling molecules to alter the stress response program, we will be able to modulate these events to treat cancer, neurodegenerative diseases and viral infections. We will test our central hypothesis by the completion of three specific aims:
AIM 1. To test the hypothesis that SGs promote the survival of stressed cells by modulating multiple signaling pathways. Our working hypothesis is that SG dependent alteration of multiple signaling pathways is sufficient to promote the survival of cells exposed to adverse conditions.
AIM 2. To test the hypothesis that nutrient stress inhibits SG formation via autophagic and non-autophagic pathways. Our working hypothesis is that nutrient stress- activated AMPK and ULK1 both directly (via phosphorylation of SG components) and indirectly (via induction of autophagic vacuoles that target SGs for degradation) inhibit SG formation.
AIM 3. To test the hypothesis that phosphorylation and 14-3-3 protein binding to LC/ID regions of signaling proteins modulates SG composition and function. Our working hypothesis is that these modifications stabilize the structure of LC/ID regions in a way that prevents their recruitment to SGs.
These aims will be completed using a USP10 point mutation that does not bind G3BP or inhibit SG formation to probe the relationship between SG assembly and cell survival. We will determine the role of nutrient stress in modulating SG formation in WT and autophagy- defective mouse embryo fibroblasts with or without dominant negative inhibitors of AMPK and ULK1. Finally, we will determine how phosphorylation and 14-3-3 binding alter the structure of LC/ID regions of SG proteins by monitoring in vitro hydrogel formation, binding to 5-aryl-isoxazole-3-carboxyamide, and NMR spectroscopy. These results are significant because they will provide a molecular basis for the development of pharmacologic strategies to modulate SG formation and cell survival in disease. This research is innovative because it shifts the paradigm of SGs from one of translational control to one of cell signaling.

Public Health Relevance

This project will determine how stress granules, discrete RNA- and protein-containing regions found in the cytoplasm of stressed cells, communicate a 'state of emergency' by sequestering components of multiple signaling pathways to enhance the survival of cells exposed to adverse conditions. As stress granules have been implicated in the pathogenesis of cancer, neurodegenerative disease, and virus infection, we expect to identify targets for the development of drugs that modulate stress granule assembly to increase (motoneurons in patients with neurodegenerative disease) or decrease (cancer) cell survival in different disease states.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM111700-02
Application #
8909137
Study Section
Molecular Genetics B Study Section (MGB)
Program Officer
Reddy, Michael K
Project Start
2014-08-15
Project End
2018-04-30
Budget Start
2015-05-01
Budget End
2016-04-30
Support Year
2
Fiscal Year
2015
Total Cost
$336,855
Indirect Cost
$146,855
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115
Fay, Marta M; Anderson, Paul J (2018) The Role of RNA in Biological Phase Separations. J Mol Biol 430:4685-4701
Aulas, Anaïs; Lyons, Shawn M; Fay, Marta M et al. (2018) Nitric oxide triggers the assembly of ""type II"" stress granules linked to decreased cell viability. Cell Death Dis 9:1129
Boeynaems, Steven; Bogaert, Elke; Kovacs, Denes et al. (2017) Phase Separation of C9orf72 Dipeptide Repeats Perturbs Stress Granule Dynamics. Mol Cell 65:1044-1055.e5
Aulas, Anaïs; Fay, Marta M; Lyons, Shawn M et al. (2017) Stress-specific differences in assembly and composition of stress granules and related foci. J Cell Sci 130:927-937
Aulas, Anaïs; Fay, Marta M; Szaflarski, Witold et al. (2017) Methods to Classify Cytoplasmic Foci as Mammalian Stress Granules. J Vis Exp :
Fay, Marta M; Anderson, Paul J; Ivanov, Pavel (2017) ALS/FTD-Associated C9ORF72 Repeat RNA Promotes Phase Transitions In Vitro and in Cells. Cell Rep 21:3573-3584
Kedersha, Nancy; Panas, Marc D; Achorn, Christopher A et al. (2016) G3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits. J Cell Biol 212:845-60
Szaflarski, Witold; Fay, Marta M; Kedersha, Nancy et al. (2016) Vinca alkaloid drugs promote stress-induced translational repression and stress granule formation. Oncotarget 7:30307-22
Lyons, Shawn M; Anderson, Paul (2016) RNA-Seeded Functional Amyloids Balance Growth and Survival. Dev Cell 39:131-132
Panas, Marc D; Ivanov, Pavel; Anderson, Paul (2016) Mechanistic insights into mammalian stress granule dynamics. J Cell Biol 215:313-323

Showing the most recent 10 out of 16 publications