The innate immune system is the first line of defense against microbial and viral infections. A failure to elicit the early innate immune response leads to systemic infections. A significant number of human viruses, including Influenza, Hepatitis C, Dengue, West Nile, Respiratory Syncytial, Reovirus, and Ebola are recognized by the innate immunity receptor RIG-I. The overall goal of this proposal is to understand how RIG-I (Retinoic Acid-inducible Gene-I), a cytoplasmic receptor discriminates normal, cellular from viral RNAs to stimulate a host response. A major goal of our collaborative research studies has been to understand the thermodynamic, kinetic, and structural mechanisms by which RIG-I recognizes atypical pathogen associated molecular pattern (PAMP) feature in RNAs. Our crystal structure of RIG-I bound to blunt-ended dsRNA and an ATP analog established a new paradigm for RIG-I activation. The goal of this proposal is to rigorously test the RIG-I activation model using carefully designed biochemical, kinetic, and structural studies. Our preliminary results demonstrate that RIG-I is regulated in multiple ways and RNA binding affinity is not the only criterion for PAMP selection. With a unique collection of purified protein, RNA reagents, we will employ complementary biochemical, biophysical, structural, and cell based approaches to 1) understand the basis of PAMP versus non-PAMP recognition of RNA by RIG-I;2) characterize RIG-I ATPase activity and its role in RIG-I activation;and 3) understand the mechanism of RIG-I signaling. The outcomes are better understanding of self versus non-self recognition and RIG-I evasion mechanism, which can lead to the development of broad-spectrum antivirals, anti-inflammatory therapeutics and RNA-based gene silencing agents.

Public Health Relevance

The innate immune system acts as the first line of defense against pathogenic infection to stimulate the host's response. RIG-I is an important receptor of the innate immune system and plays a critical role in discriminating between viral and cellular RNA in the cytoplasm. In this proposal, we aim to systematically assess and refine the current paradigm for RIG-I activation

National Institute of Health (NIH)
Research Project (R01)
Project #
Application #
Study Section
Macromolecular Structure and Function B Study Section (MSFB)
Program Officer
Sakalian, Michael
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Rutgers University
Schools of Arts and Sciences
New Brunswick
United States
Zip Code