Over the past decade, genome-wide association studies and comprehensive whole-genome sequencing analyses have uncovered both common and rare variants that are associated with a wide range of disease- related traits. The majority of these associated variants lie in intergenic regions, and it has been suggested that they modulate the expression of individual genes. Indeed, genetic analyses have identified a large number of expression quantitative trait loci adjacent to the affected genes (cis-eQTL), and many sequence variants are strongly associated with both the expression of individual genes and disease-related traits. However, deciphering the underlying molecular mechanisms has been challenging. Traditional laboratory approaches, such as luciferase reporter constructs or electrophoretic mobility shift assays, as well as recent chromatin analyses (DNase hypersensitivity mapping, ATAC-Seq) clearly suggest a functional impact for disease- associated promoter variants, but no effective methods exist to identify the regulatory proteins binding to these variant sites and mediating their effect on the regulation of gene expression. Therefore, alternative approaches are required to more efficiently identify these unknown regulatory proteins whose promoter binding and interaction is affected by eQTL variants. We recently developed a novel approach, Hybridization Capture of Chromatin-Associated Proteins for Proteomics (HyCCAPP), that allows the identification of all proteins bound to a specific target chromatin region by mass spectrometry. We propose to adapt the HyCCAPP approach for the analysis of luciferase reporter plasmid constructs commonly used to assess the impact of sequence variants on promoter activity, and apply the technology to the analysis of selected eQTL promoter variants. We hypothesize that the HyCCAPP technology will uncover novel regulatory proteins mediating the effect of promoter variants on gene expression, revealing potentially novel molecular mechanisms underlying eQTLs. We will pursue three Specific Aims: 1) optimize HyCCAPP for the analysis of luciferase reporter plasmids, 2) analyze select promoter variants in eQTL regions using plasmid HyCCAPP, and 3) validate the impact of protein binding on gene expression in vivo in CRISPR-Cas9 edited cell lines. The technology development of HyCCAPP to target luciferase reporter plasmids, and a proof-of-principle application to promoter variants associated with gene expression changes, will establish a powerful new and effective tool for the investigation of the mechanisms by which regulatory sequence variants alter binding of regulatory proteins. No other current technology allows the effective de novo identification of DNA binding proteins affected by sequence variants. The use of commonly used luciferase reporter plasmid approaches with the new HyCCAPP technology will help reveal new mechanisms of gene expression regulation contributing to the development and progression of human disorders.

Public Health Relevance

Genome-wide association studies and whole genome sequencing efforts have identified sequence variants that are associated with complex human diseases, and also with expression levels of individual genes. Likely, the regulation of the expression of these particular genes affects the development and progression of the disease, but the underlying molecular mechanisms, and the regulatory proteins that mediate this effect are largely unknown. We are proposing to develop a novel technology that allows the efficient identification and characterization of the proteins that regulate gene expression, to help identify potential novel targets for intervention and treatment of the resulting human disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM118741-02
Application #
9787533
Study Section
Genomics, Computational Biology and Technology Study Section (GCAT)
Program Officer
Krasnewich, Donna M
Project Start
2018-09-18
Project End
2022-08-31
Budget Start
2019-09-01
Budget End
2020-08-31
Support Year
2
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Wake Forest University Health Sciences
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
937727907
City
Winston-Salem
State
NC
Country
United States
Zip Code
27157