The mechanisms that control the growth and functional differentiation of the liver in the late gestation fetus are critical to fetal metabolis and metabolic adaptation of the newborn. Their perturbation contributes to fetal origins of adult metabolic disorders. The biology of fetal liver development also has relevance for cell-based therapy for liver diseases, hepatic carcinogenesis, and the control of fetal somatic growth. This proposal is based on the central hypothesis that late gestation fetal liver development is regulated by mechanisms that differ from those that control adult liver mass. It focuses on the mechanisms by which the mammalian Target of Rapamycin (mTOR), a nutrient-sensing Ser/Thr kinase, regulates cell cycle progression, ribosomal biogenesis, protein synthesis, and gene expression. The long term goal of the project is to understand nutrient regulation of fetal somatic growth. This goal will be pursued through three Specific Aims. The first two will focus on molecular mechanisms that control cell proliferation and growth. Results from these aims will be applied to the third aim that will employ a novel animal model of enhanced mTOR signaling.
Specific Aim 1 is to determine the mechanism by which mTOR controls cell cycle progression through regulation of the activity of cyclin E-containing complexes.
This aim will test the hypothesis that mTOR mediates post-translational modification of components of cyclin E complexes that regulate activity of the cyclin E effector, cyclin- dependent kinase 2 (CDK2).
Specific Aim 2 is to test the hypothesis that the Ser/Thr protein phosphatases, PP2A and PP6, are directly involved in the mTOR-mediated regulation of hepatocyte proliferation, ribosomal biogenesis, and translation.
In Specific Aim 3, we will apply the findings from the first two aims to a model of global mTOR activation in the late gestation fetal mouse. We will use a genetic mouse model in which there is conditional deletion of a key mTOR inhibitor, Tsc1.
This aim will test two hypotheses. The first is that fetal cells in a spectrum of tissues are responsive to augmented mTOR activity through augmented cell cycle progression, ribosomal biogenesis and global protein synthesis, and through modulation of gene expression. The second is that mTOR activation can rescue the fetus from the growth retardation associated with maternal protein restriction. The project will incorporate innovative analytical approaches, including stable shRNA- mediated gene deletion and mass spectrometry-based phosphoproteomics, to characterize molecular mechanisms involved in mTOR signaling. Completion of these aims will advance our understanding of how nutrients regulate fetal growth during late gestation. Our results will provide insight into the pathogenesis and prevention of dysregulated liver metabolism and liver cancer while also contributing to the development of cell- based strategies for therapy of liver disease. The proposed work also has significance for several broad areas of human health and disease, including the dysregulation of fetal growth and its attendant postnatal consequences, the biology of facultative progenitor cells, and tissue regeneration and carcinogenesis.

Public Health Relevance

of the proposed work to public health is based on the relationship between fetal growth and a spectrum of disorders that includes obesity, metabolic syndrome and type 2 diabetes, and cancer. Under- standing the growth regulation of fetal cells also has implications for cell-based therapy for a variety of dis- eases. Thus, the goas of the project are consonant with the focus of NICHD on health and disease across the developmental continuum.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Project (R01)
Project #
5R01HD024455-25
Application #
8652987
Study Section
Pregnancy and Neonatology Study Section (PN)
Program Officer
Ilekis, John V
Project Start
1989-04-01
Project End
2017-03-31
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
25
Fiscal Year
2014
Total Cost
$391,941
Indirect Cost
$145,437
Name
Rhode Island Hospital
Department
Type
DUNS #
075710996
City
Providence
State
RI
Country
United States
Zip Code
02903
Sanders, Jennifer A (2017) Late Gestation Fetal Hepatocytes for Liver Repopulation in the Rat. Methods Mol Biol 1506:45-60
Boylan, Joan M; Francois-Vaughan, Heather; Gruppuso, Philip A et al. (2017) Engraftment and Repopulation Potential of Late Gestation Fetal Rat Hepatocytes. Transplantation 101:2349-2359
Adebayo Michael, Adeola O; Ahsan, Nagib; Zabala, Valerie et al. (2017) Proteomic analysis of laser capture microdissected focal lesions in a rat model of progenitor marker-positive hepatocellular carcinoma. Oncotarget 8:26041-26056
Tan, Ek Khoon; Shuh, Maureen; Francois-Vaughan, Heather et al. (2017) Negligible Oval Cell Proliferation Following Ischemia-Reperfusion Injury With and Without Partial Hepatectomy. Ochsner J 17:31-37
Boylan, Joan M; Sanders, Jennifer A; Gruppuso, Philip A (2016) Regulation of fetal liver growth in a model of diet restriction in the pregnant rat. Am J Physiol Regul Integr Comp Physiol 311:R478-88
Francois-Vaughan, Heather; Adebayo, Adeola O; Brilliant, Kate E et al. (2016) Persistent effect of mTOR inhibition on preneoplastic foci progression and gene expression in a rat model of hepatocellular carcinoma. Carcinogenesis 37:408-419
Gruppuso, Philip A; Sanders, Jennifer A (2016) Regulation of liver development: implications for liver biology across the lifespan. J Mol Endocrinol 56:R115-25
Huse, Susan M; Gruppuso, Philip A; Boekelheide, Kim et al. (2015) Patterns of gene expression and DNA methylation in human fetal and adult liver. BMC Genomics 16:981
Boylan, Joan M; Salomon, Arthur R; Tantravahi, Umadevi et al. (2015) Adaptation of HepG2 cells to a steady-state reduction in the content of protein phosphatase 6 (PP6) catalytic subunit. Exp Cell Res 335:224-37
Boylan, Joan M; Sanders, Jennifer A; Neretti, Nicola et al. (2015) Profiling of the fetal and adult rat liver transcriptome and translatome reveals discordant regulation by the mechanistic target of rapamycin (mTOR). Am J Physiol Regul Integr Comp Physiol 309:R22-35

Showing the most recent 10 out of 77 publications