The Wnt pathway has emerged as a critical regulator of early axis specification in vertebrates. This proposal aims to determine how the Wnt pathway becomes activated in the early embryo, and how this leads to the induction of the Spemann organizer. In Xenopus, the Wnt pathway is activated by a sperm-induced rotation of the embryonic cortex. This activation does not require Wnt ligands, and may therefore be regulated intracellularly. Following the earlier discovery that a key event in Wnt- signalling is inhibition of the kinase GSK-3, this laboratory has recently identified a novel, inhibitory GSK-3 binding protein, GBP, and demonstrated that it is required for dorsal axis induction. A major aim of this proposal is to determine precisely how GBP inhibits the activity of GSK-3, which functions as part of a multi-protein complex. Since GBP may be localized or activated locally in response to cortical rotation, investigations will determine where GBP is found in the embryo, whether it is regionally modified, and whether it binds other proteins in the early Xenopus embryo. Additional studies will ask whether the regulation of Wnt signalling by GBP is used throughout development, or whether GBP is solely a specialized maternal regulator of the Wnt pathway used only for dorsal axis specification. A second major area will investigate specifically how the activation of the Spemann organizer is regulated. Since the organizer forms in response to a Wnt pathway-mediated transcriptional depression, the molecular basis of this depression will be investigated. Furthermore, the factors that restrict the formation of the organizer to the equator of the embryo will be investigated since the principle role of the cortical rotation is to ensure that the Wnt pathway is activated at the equator. Since the Wnt pathway is implicated in normal vertebrate development and oncogenesis, these studies will be important in understanding the molecular basis of birth defects and cancer.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Project (R01)
Project #
5R01HD027262-13
Application #
6526930
Study Section
Human Embryology and Development Subcommittee 1 (HED)
Program Officer
Klein, Steven
Project Start
1990-08-01
Project End
2004-07-31
Budget Start
2002-08-01
Budget End
2003-07-31
Support Year
13
Fiscal Year
2002
Total Cost
$301,117
Indirect Cost
Name
University of Washington
Department
Biochemistry
Type
Schools of Medicine
DUNS #
135646524
City
Seattle
State
WA
Country
United States
Zip Code
98195
Weiser, Douglas C; Kimelman, David (2012) Analysis of cell shape and polarity during zebrafish gastrulation. Methods Mol Biol 839:53-68
Kimelman, David (2010) On the fast track to organizer gene expression. Dev Cell 19:190-2
Dahlberg, Caroline Lund; Nguyen, Elizabeth Z; Goodlett, David et al. (2009) Interactions between Casein kinase Iepsilon (CKIepsilon) and two substrates from disparate signaling pathways reveal mechanisms for substrate-kinase specificity. PLoS One 4:e4766
Martin, Benjamin L; Kimelman, David (2008) Regulation of canonical Wnt signaling by Brachyury is essential for posterior mesoderm formation. Dev Cell 15:121-33
Weiser, Douglas C; St Julien, Krystal R; Lang, James S et al. (2008) Cell shape regulation by Gravin requires N-terminal membrane effector domains. Biochem Biophys Res Commun 375:512-6
Weiser, Douglas C; Pyati, Ujwal J; Kimelman, David (2007) Gravin regulates mesodermal cell behavior changes required for axis elongation during zebrafish gastrulation. Genes Dev 21:1559-71
Xu, Wenqing; Kimelman, David (2007) Mechanistic insights from structural studies of beta-catenin and its binding partners. J Cell Sci 120:3337-44
Sampietro, James; Dahlberg, Caroline L; Cho, Uhn Soo et al. (2006) Crystal structure of a beta-catenin/BCL9/Tcf4 complex. Mol Cell 24:293-300
Kimelman, D; Xu, W (2006) beta-catenin destruction complex: insights and questions from a structural perspective. Oncogene 25:7482-91
Clements, Wilson K; Kimelman, David (2005) LZIC regulates neuronal survival during zebrafish development. Dev Biol 283:322-34

Showing the most recent 10 out of 37 publications