Congenital muscular dystrophies (CMDs) with brain malformations are genetic diseases. Brain malformation involves movement of neurons out of the cerebral cortex through breaches of the pial basement membrane (PBM). We propose to study the critical molecules underlying formation of the PBM by radial glia. O-mannosyl glycosylation appears to have an important role. Also further studies of POMT2 conditional knockout mice may shed light on disruptions of the PBM that mediate migration of cells out of the brain. Our hypothesis is that radial glia have a key role in assembling the PBM.
Specific Aims are to investigate: 1. The role of radial glia in assembly of the pial basement membrane (PBM). 2. The mechanisms of PBM abnormalities in POMT2 knockout mice. 3. The feasibility of using Large in gene therapy. The proposed research will provide new and important insights into how protein O- mannosyl glycosylation regulates the formation and maintenance of the PBM. It should also yield insights on mechanisms underlying brain malformations in type II lissencephaly. Better knowledge of the key molecules involved in PBM disruptions should lead to potential gene therapies. Gene delivery to restore protein functions should be directed at those cells that organize the formation of the PBM. The proposed research should lead to an improved understanding of the pathogenesis of muscular dystrophies in general and their treatment. 1

Public Health Relevance

Type II lissencephaly in congenital muscular dystrophies is caused by disruptions of the pial basement membrane. Aberrant cell-extracellular matrix interaction at the brain surface is the cause of those disruptions. Studies will determine the cells and their molecules responsible for organizing the formation of the pial basement membrane to identify potential targets for gene therapy.

National Institute of Health (NIH)
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Research Project (R01)
Project #
Application #
Study Section
Intercellular Interactions (ICI)
Program Officer
Krotoski, Danuta
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Upstate Medical University
Other Basic Sciences
Schools of Medicine
United States
Zip Code
Zhang, Peng; Yang, Yuan; Candiello, Joseph et al. (2013) Biochemical and biophysical changes underlie the mechanisms of basement membrane disruptions in a mouse model of dystroglycanopathy. Matrix Biol 32:196-207
Sato, Yuya; Shimono, Chisei; Li, Shaoliang et al. (2013) Nephronectin binds to heparan sulfate proteoglycans via its MAM domain. Matrix Biol 32:188-95
Yu, Miao; He, Yonglin; Wang, Kejian et al. (2013) Adeno-associated viral-mediated LARGE gene therapy rescues the muscular dystrophic phenotype in mouse models of dystroglycanopathy. Hum Gene Ther 24:317-30
Zhang, Peng; Hu, Huaiyu (2012) Differential glycosylation of ýý-dystroglycan and proteins other than ýý-dystroglycan by like-glycosyltransferase. Glycobiology 22:235-47
Hu, Huaiyu; Li, Jing; Zhang, Zhen et al. (2011) Pikachurin interaction with dystroglycan is diminished by defective O-mannosyl glycosylation in congenital muscular dystrophy models and rescued by LARGE overexpression. Neurosci Lett 489:10-5
Li, Jing; Yu, Miao; Feng, Gang et al. (2011) Breaches of the pial basement membrane are associated with defective dentate gyrus development in mouse models of congenital muscular dystrophies. Neurosci Lett 505:19-24
Stalnaker, Stephanie H; Aoki, Kazuhiro; Lim, Jae-Min et al. (2011) Glycomic analyses of mouse models of congenital muscular dystrophy. J Biol Chem 286:21180-90
Zhang, Zhen; Zhang, Peng; Hu, Huaiyu (2011) LARGE expression augments the glycosylation of glycoproteins in addition to ýý-dystroglycan conferring laminin binding. PLoS One 6:e19080
Hu, Huaiyu; Li, Jing; Gagen, Christine S et al. (2011) Conditional knockout of protein O-mannosyltransferase 2 reveals tissue-specific roles of O-mannosyl glycosylation in brain development. J Comp Neurol 519:1320-37
Liu, Jianmin; Yang, Yuan; Li, Xiaofeng et al. (2010) Cellular and molecular characterization of abnormal brain development in protein o-mannose N-acetylglucosaminyltransferase 1 knockout mice. Methods Enzymol 479:353-66

Showing the most recent 10 out of 11 publications