Complex oligosaccharides have been proposed to exert important biological properties for human health. However, despite advances in the commercialization of simple plant oligosaccharides and polysaccharides, these products of plant metabolism are unable to substantially alter the human gut microbial ecology nor its metabolism nor the physiology and disease risks of humans. Human milk, on the other hand, is an attractive source of oligosaccharides precisely because human milk produces a unique microbiota whose persistence yields scientifically established evidence of benefits to human infants. The free oligosaccharides in human milk have emerged through evolution in remarkable abundance and with significant structural diversity. Research in the collaborating laboratories has demonstrated that these oligosaccharides constitute a symbiotic system in human infants stimulating the competitive growth of commensal bifidobacteria. In this project we propose to build the analytic, genetic and biological tools to establish the structures and functions of the oligosaccharides in human milk as thematic principles to guide the development, research and industrialization of bioactive oligosaccharides for human health. To achieve this goal, we will: (A) elucidate in precise chemical detail the entire human milk glycome and categorize a diverse pool of human lactating subjects differing in the composition of expressed oligosaccharides, (B) develop analytical tools to rapidly determine human secretor versus non- secretor status based on the oligosaccharide profile and link maternal secretor status to milk oligosaccharide composition and microbiota diversity, and (C) establish the genetic basis of bifidobacterial selection by the specific structures in the ensemble of human milk oligosaccharides using whole genomic analysis of a range of bifidobacterial strains, relating specific oligosaccharide consumption by bacteria to functional analysis of genes and proteins in and on bacterial surfaces.

Public Health Relevance

Lebrilla, Carlito B. Title: Structures, Functions, and Genetic Diversity of the Complex Oligosaccharides Present in Human Milk NARRATIVE Human milk will be examined as a source of prebiotic oligosaccharides that are beneficial food for gut bacteria. The prebiotic oligosaccharides are sugar chains with little nutritional value to the infant but select the growth of certain bacteria. We will determine whether there is a genetic correlation between the types of oligosaccharides produced by the mother and those that are consumed by the infant's gut bacteria.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Project (R01)
Project #
5R01HD061923-04
Application #
8305556
Study Section
Special Emphasis Panel (ZHD1-DSR-Z (04))
Program Officer
Grave, Gilman D
Project Start
2009-09-15
Project End
2014-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
4
Fiscal Year
2012
Total Cost
$324,827
Indirect Cost
$110,987
Name
University of California Davis
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Charbonneau, Mark R; Blanton, Laura V; DiGiulio, Daniel B et al. (2016) A microbial perspective of human developmental biology. Nature 535:48-55
Davis, Jasmine C C; Totten, Sarah M; Huang, Julie O et al. (2016) Identification of Oligosaccharides in Feces of Breast-fed Infants and Their Correlation with the Gut Microbial Community. Mol Cell Proteomics 15:2987-3002
Huang, Jincui; Guerrero, Andres; Parker, Evan et al. (2015) Site-specific glycosylation of secretory immunoglobulin A from human colostrum. J Proteome Res 14:1335-49
Guerrero, Andres; Lerno, Larry; Barile, Daniela et al. (2015) Top-down analysis of highly post-translationally modified peptides by Fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom 26:453-9
Ruhaak, L Renee; Lebrilla, Carlito B (2015) Applications of Multiple Reaction Monitoring to Clinical Glycomics. Chromatographia 78:335-342
Grapov, Dmitry; Lemay, Danielle G; Weber, Darren et al. (2015) The human colostrum whey proteome is altered in gestational diabetes mellitus. J Proteome Res 14:512-20
Dallas, David C; Guerrero, Andres; Parker, Evan A et al. (2015) Current peptidomics: applications, purification, identification, quantification, and functional analysis. Proteomics 15:1026-38
Garrido, Daniel; Ruiz-Moyano, Santiago; Lemay, Danielle G et al. (2015) Erratum: Comparative transcriptomics reveals key differences in the response to milk oligosaccharides of infant gut-associated bifidobacteria. Sci Rep 5:15311
Hong, Qiuting; Ruhaak, L Renee; Stroble, Carol et al. (2015) A Method for Comprehensive Glycosite-Mapping and Direct Quantitation of Serum Glycoproteins. J Proteome Res 14:5179-92
Garrido, Daniel; Ruiz-Moyano, Santiago; Lemay, Danielle G et al. (2015) Comparative transcriptomics reveals key differences in the response to milk oligosaccharides of infant gut-associated bifidobacteria. Sci Rep 5:13517

Showing the most recent 10 out of 88 publications