Human milk contains a remarkable content and structural diversity of oligosaccharides (HMO) that act as a component of the innate immunity by preventing attachment of pathogens to the intestinal lining and by promoting colonization by a healthy microbiota. Despite their recognized importance in neonatal health, research on HMO has been hindered by insufficient quantities to conduct feeding studies. Our long range goal is to understand the mechanisms whereby HMO stimulates neonatal innate and adaptive immunity. We are ideally positioned to undertake these investigations as we have access to large quantities of enzymatically synthesized lacto-N-neotetraose (LNnT) and human milk from which to extract HMO. The objective of this application is to determine how HMO, LNnT, polydextrose and galactooligosaccharide (PDX/GOS) influence activation of dendritic cells (DC) and lymphocyte responses to vaccination against rotavirus (RV) and a subsequent RV challenge in the piglet model. Our central hypothesis is that HMO will enhance immune function by two inter-related mechanisms by directly interacting with DCs and, indirectly, by altering the intestinal microbiota. First, we postulate that HMO glycans interact with c-type lectin receptors on DC, which induce in DC activation and activation of B- and T-lymphocytes. Second, we hypothesize that HMO will promote the growth of Lactobacillus and Bifidobacterium, leading to fermentation of oligosaccharides and enhanced mucosal resistance to RV infection.
The specific aims will 1) assess the potential for HMO, LNnT and PDX/GOS to be fermented, to stimulate DC activation and to inhibit RV infectivity and binding in vitro, 2) evaluate the prebiotic actions of oligosaccharides on microbial colonization, mucosal immunity and the response RV vaccination in the piglet, and 3) establish how oligosaccharides alone or in combination with vaccination modulate the response to RV infection in the piglet. The rationale for undertaking this research is that no previous studies have systematically investigated how HMO, LNnT and synthetic prebiotics modulate the microbiota and mucosal immunity. The use of relevant preclinical animal model of RV vaccination and challenge that will further our understanding of the mechanisms underlying the disease and demonstrate the potential for HMOs to improve intestinal function, modulate host-microbe interactions and alter mucosal immunity. Reducing the morbidity and mortality from RV will decrease health care costs and improve the quality of life for infants worldwide.

Public Health Relevance

Human milk contains high concentrations of oligosaccharides that are not found in infant formulas and are proposed to contribute to the health benefits of human milk. The proposed studies will determine how oligosaccharides affect the bacteria in the intestine and immune maturation of neonates. This knowledge will allow for the development of nutritional ingredients to improve the quality of infant formulas for babies who are not breastfed.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Project (R01)
Project #
5R01HD061929-04
Application #
8298230
Study Section
Special Emphasis Panel (ZHD1-DSR-Z (04))
Program Officer
Grave, Gilman D
Project Start
2009-09-15
Project End
2014-06-30
Budget Start
2012-07-01
Budget End
2014-06-30
Support Year
4
Fiscal Year
2012
Total Cost
$305,043
Indirect Cost
$112,587
Name
University of Illinois Urbana-Champaign
Department
Nutrition
Type
Schools of Earth Sciences/Natur
DUNS #
041544081
City
Champaign
State
IL
Country
United States
Zip Code
61820
Li, Min; Monaco, Marcia H; Wang, Mei et al. (2014) Human milk oligosaccharides shorten rotavirus-induced diarrhea and modulate piglet mucosal immunity and colonic microbiota. ISME J 8:1609-20
Li, Min; Wang, Mei; Donovan, Sharon M (2014) Early development of the gut microbiome and immune-mediated childhood disorders. Semin Reprod Med 32:74-86
Donovan, Sharon M; Wang, Mei; Monaco, Marcia H et al. (2014) Noninvasive molecular fingerprinting of host-microbiome interactions in neonates. FEBS Lett 588:4112-9
Knight, Jason M; Davidson, Laurie A; Herman, Damir et al. (2014) Non-invasive analysis of intestinal development in preterm and term infants using RNA-Sequencing. Sci Rep 4:5453
Hester, Shelly N; Chen, Xin; Li, Min et al. (2013) Human milk oligosaccharides inhibit rotavirus infectivity in vitro and in acutely infected piglets. Br J Nutr 110:1233-42
Li, Min; Bauer, Laura L; Chen, Xin et al. (2012) Microbial composition and in vitro fermentation patterns of human milk oligosaccharides and prebiotics differ between formula-fed and sow-reared piglets. J Nutr 142:681-9
Tao, Nannan; Ochonicky, Karen L; German, J Bruce et al. (2010) Structural determination and daily variations of porcine milk oligosaccharides. J Agric Food Chem 58:4653-9
Poroyko, Valeriy; White, James Robert; Wang, Mei et al. (2010) Gut microbial gene expression in mother-fed and formula-fed piglets. PLoS One 5:e12459