Childhood overweight and obesity has emerged as an epidemic. In 2003-2004, over 33 percent of US children and adolescents were overweight or obese. As the cohort born since 1980 moves into adulthood and middle age, we will see increasing incidence of diabetes, heart disease, kidney failure, and related metabolic disorders. Considerable research effort has been expended to identify the causes of childhood obesity, a necessary first step in suggesting potential prevention strategies to mitigate or reverse this growing problem. However, to date only particular subsets of the problem have been addressed. Some of the identified factors related to obesity are clearly nested within others. For example, characteristics of the built environment vary by race-ethnicity, and obesogenic factors are more prevalent in disadvantaged communities;this may increase the risk of obesity and low physical activity levels in children. Likewise, metabolic processes are nested within individuals, who are further located within neighborhoods;as a result, insulin resistance may also follow proximity to healthy neighborhoods and their amenities. Disentangling the web of causation of childhood obesity is a formidable task, and both available data and standard epidemiologic analyses may be inadequate to capture multiple and interacting levels of causation. This problem is not particular to obesity epidemiology;the problems of micro- and macro-structure are common in social sciences. Furthermore, the presence of feedback loops precludes standard approaches to causality, which are based on directed (non-feedback) relationships, independence of effects, and identifiability assumptions. In response to RFA-HD-08-023 (Innovative Computational and Statistical Methodologies for the Design and Analysis of Multilevel Studies on Childhood Obesity), we propose a novel multilevel study design and analysis plan to address this problem. In particular, we propose a strategy based on synthesis, simulation, and manipulation. Our methods will focus on a novel methodological technique, agent-based computational modeling.

Public Health Relevance

Disentangling the web of causation of childhood obesity is a formidable task, and both available data and standard epidemiologic analyses may be inadequate to capture multiple and interacting levels of causation. We propose a novel multilevel study design and analysis plan to address this problem, based on synthesis, simulation, and manipulation. Our methods will focus on a novel methodological technique, agent-based computational modeling.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Project (R01)
Project #
5R01HD061978-05
Application #
8485410
Study Section
Special Emphasis Panel (ZHD1-DSR-M (23))
Program Officer
Bures, Regina M
Project Start
2009-08-01
Project End
2014-05-31
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
5
Fiscal Year
2013
Total Cost
$316,609
Indirect Cost
$81,724
Name
Loyola University Chicago
Department
Public Health & Prev Medicine
Type
Schools of Medicine
DUNS #
791277940
City
Maywood
State
IL
Country
United States
Zip Code
60153
Zhang, J; Tong, L; Lamberson, P J et al. (2015) Leveraging social influence to address overweight and obesity using agent-based models: the role of adolescent social networks. Soc Sci Med 125:203-13
Ip, Edward H; Rahmandad, Hazhir; Shoham, David A et al. (2013) Reconciling statistical and systems science approaches to public health. Health Educ Behav 40:123S-31S
Auchincloss, Amy H; Young, Candace; Davis, Andrea L et al. (2013) Barriers and facilitators of consumer use of nutrition labels at sit-down restaurant chains. Public Health Nutr 16:2138-45