Multiple mechanisms have been hypothesized to contribute to the development of pelvic organ prolapse, but none fully explain the origin and natural history of this process. Epidemiologic studies indicate that vaginal birth, aging, and menopause are major risk factors. The specific impact of childbirth, aging, and menopause on the supportive structures of the pelvic floor, however, is not known. This gap in our knowledge results in an inability to develop preventative strategies to reduce damage to these tissues during childbirth or to ameliorate the effects of aging on deterioration of pelvic organ support. Animal models with defects in proteins involved in elastic fiber assembly and synthesis develop pelvic organ prolapse. In addition to elastic fiber defects, results obtained by way of preliminary studies suggest that increased vaginal wall protease activity is a necessary and crucial process in the pathogenesis of pelvic organ prolapse, and that MMP-9 plays a major role. In this grant application, we will (i) test the hypothesis that matrix protease activation in connective tissues of the pelvic floor contributes to the progression of pelvic organ prolapse;(ii) elucidate the mechanisms by which MMP-9 is regulated in connective tissues of the pelvic floor;and, (iii) identify, characterize, and determine the regulation of two potential novel serine proteases highly expressed in the prolapsed vaginal wall. The proposed studies will answer important questions regarding maintenance of pelvic organ support. It is anticipated that understanding these basic mechanisms will lead to the development of therapeutic strategies to prevent or abrogate childbirth-related pelvic floor injury and age- and menopause-related loss of pelvic organ support.

Public Health Relevance

In this application, we will determine if protease activation in connective tissues of the pelvic floor is crucial for the development of pelvic organ prolapse. The proposed studies will answer important questions regarding maintenance of pelvic organ support. It is anticipated that understanding these basic mechanisms will lead to the development of therapeutic strategies to prevent or abrogate childbirth-related pelvic floor injury and age- and menopause-related loss of pelvic organ support.)

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Project (R01)
Project #
5R01HD064824-05
Application #
8669737
Study Section
Urologic and Kidney Development and Genitourinary Diseases Study Section (UKGD)
Program Officer
Meikle, Susan
Project Start
2010-08-17
Project End
2015-05-31
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
5
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Texas Sw Medical Center Dallas
Department
Biochemistry
Type
Schools of Medicine
DUNS #
City
Dallas
State
TX
Country
United States
Zip Code
75390
Ripperda, Christopher M; Maldonado, Pedro Antonio; Acevedo, Jesus F et al. (2017) Vaginal estrogen: a dual-edged sword in postoperative healing of the vaginal wall. Menopause 24:838-849
Chin, Kathleen; Wieslander, Cecilia; Shi, Haolin et al. (2016) Pelvic Organ Support in Animals with Partial Loss of Fibulin-5 in the Vaginal Wall. PLoS One 11:e0152793
Papke, Christina L; Tsunezumi, Jun; Ringuette, Léa-Jeanne et al. (2015) Loss of fibulin-4 disrupts collagen synthesis and maturation: implications for pathology resulting from EFEMP2 mutations. Hum Mol Genet 24:5867-79
Papke, Christina L; Yamashiro, Yoshito; Yanagisawa, Hiromi (2015) MMP17/MT4-MMP and thoracic aortic aneurysms: OPNing new potential for effective treatment. Circ Res 117:109-12
Montoya, T Ignacio; Maldonado, P Antonio; Acevedo, Jesus F et al. (2015) Effect of vaginal or systemic estrogen on dynamics of collagen assembly in the rat vaginal wall. Biol Reprod 92:43
Papke, Christina L; Yanagisawa, Hiromi (2014) Fibulin-4 and fibulin-5 in elastogenesis and beyond: Insights from mouse and human studies. Matrix Biol 37:142-9
Budatha, Madhusudhan; Silva, Simone; Montoya, Teodoro Ignacio et al. (2013) Dysregulation of protease and protease inhibitors in a mouse model of human pelvic organ prolapse. PLoS One 8:e56376
Balgobin, Sunil; Montoya, T Ignacio; Shi, Haolin et al. (2013) Estrogen alters remodeling of the vaginal wall after surgical injury in guinea pigs. Biol Reprod 89:138
Kapustin, Alexander; Stepanova, Victoria; Aniol, Natalia et al. (2012) Fibulin-5 binds urokinase-type plasminogen activator and mediates urokinase-stimulated ?1-integrin-dependent cell migration. Biochem J 443:491-503
Funato, Noriko; Nakamura, Masataka; Richardson, James A et al. (2012) Tbx1 regulates oral epithelial adhesion and palatal development. Hum Mol Genet 21:2524-37

Showing the most recent 10 out of 19 publications