[The proposed research tests the hypothesis that atypical cerebral symmetries increase the risk for dyslexia through the expression of dyslexia-related genes that are known to regulate brain development.] While there were early promising findings linking planum temporale symmetry to dyslexia, study limitations due to small sample size, inconsistent measurement methods, and varied behavioral and genetic profiles of the subjects produced inconsistent results. [Here we examine planum temporale and other cerebral symmetries associated with dyslexia]. We address the limitations of previous studies by using a large dataset of existing genetic, neuroimaging, and behavioral data, as well as multi-site methods that we developed in the current funding period that make it possible to address dyslexia hypotheses with large multisite datasets. We have demonstrated the ability to deal with missing data, varied image acquisitions, and the behavioral heterogeneity of dyslexia samples that is influenced by sampling approaches. [Specific Aim 1 is to test the hypothesis that atypical cerebral asymmetries are observed for specific reading disability profiles, which are theoretically and empirically-grounded and map to different genetic risks.
Specific Aim 2 is to examine the degree to which specific genetic risk variants for dyslexia influence the development of cerebral asymmetries.
Specific Aim 3 is to develop the cloud-based infrastructure to provide investigators with secondary data for use in their studies and to replicate our findings (e.g., cerebral asymmetry measures related to dyslexia). The results will provide a consensus on the cerebral asymmetry hypothesis for dyslexia because of our large dataset and collaborative approach, provide behavioral neurogenetic explanations for dyslexia, and provide resources to the research community to advance our understanding of dyslexia and other developmental disorders.]

Public Health Relevance

The neurogenetic paths to the varied expression of dyslexia are unclear. [We will test a long-standing cerebral asymmetry hypothesis for dyslexia and its potential genetic underpinnings. We will develop cloud-based computing tools for data sharing and delivering automated brain morphology measures to contributors as an incentive for data sharing, and so that contributors can replicate our findings and pursue new questions with the brain morphology measures.]

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Project (R01)
Project #
2R01HD069374-06A1
Application #
9660787
Study Section
Language and Communication Study Section (LCOM)
Program Officer
Miller, Brett
Project Start
2012-01-03
Project End
2023-12-31
Budget Start
2019-01-03
Budget End
2019-12-31
Support Year
6
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Medical University of South Carolina
Department
Otolaryngology
Type
Schools of Medicine
DUNS #
183710748
City
Charleston
State
SC
Country
United States
Zip Code
29403
Eckert, Mark A; Vaden Jr, Kenneth I; Maxwell, Amanda B et al. (2017) Common Brain Structure Findings Across Children with Varied Reading Disability Profiles. Sci Rep 7:6009
Eckert, Mark A; Berninger, Virginia W; Vaden Jr, Kenneth I et al. (2016) Gray Matter Features of Reading Disability: A Combined Meta-Analytic and Direct Analysis Approach(1,2,3,4). eNeuro 3:
Eckert, Mark A; Berninger, Virginia W; Hoeft, Fumiko et al. (2016) A case of Bilateral Perisylvian Syndrome with reading disability. Cortex 76:121-4
Song, Xuebo; Wang, James; Wang, Anlin et al. (2015) DeID - a data sharing tool for neuroimaging studies. Front Neurosci 9:325
Song, Xuebo; Li, Lin; Srimani, Pradip K et al. (2014) Measure the Semantic Similarity of GO Terms Using Aggregate Information Content. IEEE/ACM Trans Comput Biol Bioinform 11:468-76
Wang, James Z; Zhang, Yuanyuan; Dong, Liang et al. (2014) G-Bean: an ontology-graph based web tool for biomedical literature retrieval. BMC Bioinformatics 15 Suppl 12:S1
Li, Lin; Zhang, Qizhi; Ding, Yihua et al. (2014) Automatic diagnosis of melanoma using machine learning methods on a spectroscopic system. BMC Med Imaging 14:36
Raskind, Wendy H; Peter, Beate; Richards, Todd et al. (2012) The genetics of reading disabilities: from phenotypes to candidate genes. Front Psychol 3:601