The spatial organization of chromosomes plays important roles in regulation of gene expression and maintenance of genome stability. Detailed knowledge of the spatial arrangements of chromosomes will help elucidate the molecular mechanisms that regulate the human genome, and will provide insights into the genetic basis of human disease. We have developed powerful molecular and genomic technologies to probe the three-dimensional structure of chromosomes. These methods allow the analysis of chromosome folding through the comprehensive analysis of long-range chromosomal interactions between widely separated functional elements, such as promoters and enhancers. We have applied these technologies to human cells during cell division and discovered that chromosomes can be organized in two fundamentally distinct three- dimensional structures: one structure, observed in interphase cells, is composed of a hierarchy of different types of chromosomal domains and chromatin loops. This structure is dedicated to gene regulation. A second structure is observed in mitotic cells, when chromosomes become condensed in preparation of cell division. We discovered that this structure is best described as a linearly organized longitudinally compressed array of consecutive chromatin loops. Here we propose to first study these two distinct chromosome conformations in more detail, and then to study the genomic elements and mechanisms cells employ to build each structure. Our proposed studies will lead to insights into the finer-scale organization of chromosomes and the intricate folding pathways that connect interphase and mitotic chromosome structures.

Public Health Relevance

The human genome contains all genetic information required for normal human development. The three- dimensional (3D) organization of the genome inside living cells is emerging as a critical determinant of controlling the genome, and defects in 3D genome organization can lead to human diseases such as cancer and diabetes. This proposal aims to unravel the mechanisms by which cells modulate the 3D folding of their genome to regulate gene expression and to faithfully transmit chromosomes to daughter cells.

Agency
National Institute of Health (NIH)
Institute
National Human Genome Research Institute (NHGRI)
Type
Research Project (R01)
Project #
5R01HG003143-12
Application #
9102150
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Pazin, Michael J
Project Start
2003-09-30
Project End
2018-06-30
Budget Start
2016-07-01
Budget End
2017-06-30
Support Year
12
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Massachusetts Medical School Worcester
Department
Biology
Type
Schools of Medicine
DUNS #
603847393
City
Worcester
State
MA
Country
United States
Zip Code
Metkar, Mihir; Ozadam, Hakan; Lajoie, Bryan R et al. (2018) Higher-Order Organization Principles of Pre-translational mRNPs. Mol Cell 72:715-726.e3
Dixon, Jesse R; Xu, Jie; Dileep, Vishnu et al. (2018) Integrative detection and analysis of structural variation in cancer genomes. Nat Genet 50:1388-1398
Kundu, Sharmistha; Ji, Fei; Sunwoo, Hongjae et al. (2018) Polycomb Repressive Complex 1 Generates Discrete Compacted Domains that Change during Differentiation. Mol Cell 71:191
Oudelaar, A Marieke; Davies, James O J; Hanssen, Lars L P et al. (2018) Single-allele chromatin interactions identify regulatory hubs in dynamic compartmentalized domains. Nat Genet 50:1744-1751
Gibcus, Johan H; Samejima, Kumiko; Goloborodko, Anton et al. (2018) A pathway for mitotic chromosome formation. Science 359:
Oomen, Marlies E; Dekker, Job (2017) Epigenetic characteristics of the mitotic chromosome in 1D and 3D. Crit Rev Biochem Mol Biol 52:185-204
Nora, Elphège P; Goloborodko, Anton; Valton, Anne-Laure et al. (2017) Targeted Degradation of CTCF Decouples Local Insulation of Chromosome Domains from Genomic Compartmentalization. Cell 169:930-944.e22
Schalbetter, Stephanie Andrea; Goloborodko, Anton; Fudenberg, Geoffrey et al. (2017) SMC complexes differentially compact mitotic chromosomes according to genomic context. Nat Cell Biol 19:1071-1080
Kundu, Sharmistha; Ji, Fei; Sunwoo, Hongjae et al. (2017) Polycomb Repressive Complex 1 Generates Discrete Compacted Domains that Change during Differentiation. Mol Cell 65:432-446.e5
Rodríguez-Carballo, Eddie; Lopez-Delisle, Lucille; Zhan, Ye et al. (2017) The HoxD cluster is a dynamic and resilient TAD boundary controlling the segregation of antagonistic regulatory landscapes. Genes Dev 31:2264-2281

Showing the most recent 10 out of 115 publications