ChIP-chip/seq in combination with transcriptome profiling has greatly helped our understanding of the molecular mechanisms underlying many physiological and pathological processes. It has also left unanswered questions on the combinatorial and context-specific nature of mammalian transcription regulation, and created challenges for computational data integration and modeling. To address these challenges, we propose to: 1) develop the computational framework for constructing condition-specific combinatorial and probabilistic transcription regulatory modules in mammalian genomes by integrating transcription factor ChIP-chip/seq, cis-element epigenome and transcriptome data;2) apply the model in 1) to construct a comprehensive probabilistic nuclear receptor regulatory network, experimentally validate the predictions, and use the results to refine the model;3) develop and maintain an open source publicly available integrated ChIP-chip/seq data analysis pipeline Cistrome. With rapid growth of transcription factor ChIP-chip/seq, cis-element epigenome, and transcriptome datasets, our methods will integrate the available datasets, infer the important missing data, and extract maximum knowledge from individual datasets. Our resulting nuclear receptor regulatory network and computational tools will also be a good resource for the community.

Public Health Relevance

The proposed study will lead to a suite of powerful and user-friendly computational tools for integrative analysis of ever-increasing amount of and diverse sources of genomic data in understanding gene regulation in mammals. These tools will allow biologists to perform discovery- based computational analyses using state-of-the-art probabilistic data mining methods. It will also build a nuclear receptor transcription regulatory network, which will provide important insights into identifying new therapeutic targets and designing novel therapeutic strategies, especially combination therapies for nuclear receptor related diseases such as atherosclerosis, diabetes and cancer.

National Institute of Health (NIH)
National Human Genome Research Institute (NHGRI)
Research Project (R01)
Project #
Application #
Study Section
Genomics, Computational Biology and Technology Study Section (GCAT)
Program Officer
Pazin, Michael J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Dana-Farber Cancer Institute
United States
Zip Code
Chen, Xi; Iliopoulos, Dimitrios; Zhang, Qing et al. (2014) XBP1 promotes triple-negative breast cancer by controlling the HIF1? pathway. Nature 508:103-7
Sulahian, R; Casey, F; Shen, J et al. (2014) An integrative analysis reveals functional targets of GATA6 transcriptional regulation in gastric cancer. Oncogene 33:5637-48
Verzi, Michael P; Shin, Hyunjin; San Roman, Adrianna K et al. (2013) Intestinal master transcription factor CDX2 controls chromatin access for partner transcription factor binding. Mol Cell Biol 33:281-92
Trynka, Gosia; Sandor, Cynthia; Han, Buhm et al. (2013) Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat Genet 45:124-30
Wang, Su; Sun, Hanfei; Ma, Jian et al. (2013) Target analysis by integration of transcriptome and ChIP-seq data with BETA. Nat Protoc 8:2502-15
Wang, Haiyun; Meyer, Clifford A; Fei, Teng et al. (2013) A systematic approach identifies FOXA1 as a key factor in the loss of epithelial traits during the epithelial-to-mesenchymal transition in lung cancer. BMC Genomics 14:680
Zhang, Xiaoxiao; Peterson, Kevin A; Liu, X Shirley et al. (2013) Gene regulatory networks mediating canonical Wnt signal-directed control of pluripotency and differentiation in embryo stem cells. Stem Cells 31:2667-79
Catic, Andre; Suh, Carol Y; Hill, Cedric T et al. (2013) Genome-wide map of nuclear protein degradation shows NCoR1 turnover as a key to mitochondrial gene regulation. Cell 155:1380-95
Sun, Hanfei; Qin, Bo; Liu, Tao et al. (2013) CistromeFinder for ChIP-seq and DNase-seq data reuse. Bioinformatics 29:1352-4
Ni, Min; Chen, Yiwen; Fei, Teng et al. (2013) Amplitude modulation of androgen signaling by c-MYC. Genes Dev 27:734-48

Showing the most recent 10 out of 57 publications