The purpose of this study is to provide empirical data on effects of intellectual property (IP) and commercialization on clinical translation of noninvasive prenatal genetic testing (NIPT) and identify potential barriers to clinical adoption and patient access. Advances in technologies for genetic analysis of cell-free fetal DNA could make NIPT routine. Early clinical trials indicate that sequencing-based NIPT tests for chromosomal aneuploidies are more accurate than currently used noninvasive screening tests. A commercial NIPT test for Down Syndrome recently became available and tests for common genetic conditions are in prospect. It is still too early to know the clinical utility and cost effectiveness of these tests. Nevertheless, NIPT could significantly change the paradigm of prenatal testing and screening and potentialy even lower costs. Intellectual property (IP) and commercialization promise to be important components in the emerging debate about when and how such technologies should enter clinical practice. IP could induce commercial investment in R&D, in regulatory approval, and in securing third-party payment. But exclusive IP rights could also hamper innovation, increase transaction costs for test developers and providers, and decrease patient access, especially if monopolies emerge. Indeed patents on foundational NIPT technologies have been exclusively licensed to companies, raising such concerns. The commercial landscape is quickly evolving and companies are already involved in patent litigation. The disposition of these patents could determine who can offer the tests and the business models that will prevail, which in turn can impact clinical adoption and patient access. The IP landscape for NIPT appears complex and is unclear. Few if any data are also available on stakeholders'views about effects of IP vs non-IP factors on clinical adoption, and patient access to NIPT.. This study will address these gaps with the following specific aims: 1) map IP relevant to NIPT and assess potential IP effects on development of new NIPT genetic tests;2) identify and rank IP versus non-IP barriers to clinical adoption and patient access based on stakeholders'views;and 3) identify ethical and policy implications of potential barriers to patiet access. A multidisciplinary team of researchers with expertise in genetics, IP law, health policy, bioethics, health economics, maternal and fetal medicine and health law will use established qualitative research methods combined with legal, ethical, and policy analysis. One outcome of this study will be a careful empirical analysis of whether and how IP can affect patient access to NIPT genetic testing. This analysis will be enabled by a publicly available IP and commercialization landscape for NIPT technologies that we will create. Another expected outcome is a forecast of barriers to clinical adoption and patient access ranked by stakeholders. A workshop at the conclusion of the study will include stakeholder representatives groups and experts from relevant domains to identify approaches and policy priorities for reducing barriers to clinical translation and promoting patient access to NIPT.

Public Health Relevance

Noninvasive prenatal genetic tests could significantly impact public health by aiding reproductive decision- making, improving pregnancy management and neonatal health care. The proposed research will find and analyze empirical data on the effects of intellectual property (IP) and commercialization on development, clinical adoption and patient access to noninvasive prenatal genetic tests. This study will also identify and compare how non-IP barriers such as FDA regulation, reimbursement, and quality control of these tests, could affect patient access and clinical adoption. The results of this study will ground and enrich ongoing debates about implementation and clinical integration of noninvasive prenatal genetic tests. This research will thus inform policy development to facilitate clinical translation of noninvasive prenatal diagnostic technologies in a rapidly evolving domain of genomic medicine.

National Institute of Health (NIH)
National Human Genome Research Institute (NHGRI)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (SEIR)
Program Officer
Mcewen, Jean
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Duke University
Schools of Medicine
United States
Zip Code
Chandrasekharan, Subhashini; Minear, Mollie A; Hung, Anthony et al. (2014) Noninvasive prenatal testing goes global. Sci Transl Med 6:231fs15
Chandrasekharan, Subhashini; McGuire, Amy L; Van den Veyver, Ignatia B (2014) Do recent US Supreme Court rulings on patenting of genes and genetic diagnostics affect the practice of genetic screening and diagnosis in prenatal and reproductive care? Prenat Diagn 34:921-6
Rodriguez, Maria I; Caughey, Aaron B (2013) Cost-effectiveness analyses and their role in improving healthcare strategies. Curr Opin Obstet Gynecol 25:487-93