Basic, translational and clinical studies attest to the pivotal role of plasminogen in numerous physiological and pathophysiological responses. In many of these processes, the involvement of plasminogen arises from its influence on inflammatory cell recruitment, which in turn depends upon its interaction with plasminogen receptors (Plg-Rs) on the responding cells. Plg-Rs are expressed ubiquitously, are present at high density on most cells and most frequently interact with the lysine binding sites of plasminogen. Examples of responses involving inflammatory cell recruitment in which plasminogen and Plg-Rs have been implicated include peritonitis, sepsis, lung injury, angiogenesis, restenosis, atherogenesis, aneurysm and the response to biomaterial implants. Plg-Rs are heterogeneous and include ones with transmembrane domains (tailed Plg-Rs) and without transmembrane domains (tailless Plg-Rs). On macrophages, the tailless Plg-Rs, histone H2B, annexin2, p11 and a-enolase, account for most of the plasminogen binding capacity of the cells. Leukocyte integrin aMb2 represents a tailed Plg-R, which, when activated, can assemble plasminogen, the urokinase plasminogen activator and its receptor into a functional complex. A panel of blocking antibodies to these five major Plg-Rs has been developed, have been shown to be specific for their target Plg-R, and can be administered in vivo as Fab fragments to inhibit inflammatory responses. These reagents will allow for the first objective dissection of the contribution of individual Plg-Rs in biologically relevant inflammatory responses.
In Aim 1, we will deploy these antibody reagents in various inflammatory response models, sepsis, angiogenesis and airway hypersensitivity, to test the hypothesis that Plg-Rs are utilized in cellular recruitment in a stimulus and tissue specific manner. The tailless Plg-Rs reach the cell surface through a common mechanism involving calcium mobilization via L-type calcium channels, but the mechanism by which they tether to the cell surface is unresolved.
In aim 2, a series of questions will be addressed which will determine if the tailless Plg-Rs anchor to the macrophage surface through a common mechanism and to identify this mechanism. Differences in localization of these Plg-Rs on migrating macrophages will also be assessed. The unexpected findings that plasminogen controls macrophage uptake of oxidized lipoproteins to form foam cells and additionally regulates expression of proatherogenic genes in these cells will be investigated in Aim 3. The Plg-Rs that mediates foam cell formation and the pathway involved in this regulatory role of plasminogen will be identified. Taken together, these studies will define how plasminogen and its receptors function in biologically important responses.

Public Health Relevance

Inflammation is a critical element in numerous diseases, and binding of plasminogen to its receptors plays a fundamental role in recruitment of cells to sites of inflammation. By identifying the plasminogen receptors involved in specific inflammatory responses, we will define new therapeutic targets for ameliorating many diseases.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL017964-37
Application #
8301511
Study Section
Hemostasis and Thrombosis Study Section (HT)
Program Officer
Sarkar, Rita
Project Start
1975-01-01
Project End
2016-04-30
Budget Start
2012-07-01
Budget End
2013-04-30
Support Year
37
Fiscal Year
2012
Total Cost
$392,500
Indirect Cost
$142,500
Name
Cleveland Clinic Lerner
Department
Other Basic Sciences
Type
Schools of Medicine
DUNS #
135781701
City
Cleveland
State
OH
Country
United States
Zip Code
44195
Huang, Ying; DiDonato, Joseph A; Levison, Bruce S et al. (2014) An abundant dysfunctional apolipoprotein A1 in human atheroma. Nat Med 20:193-203
Soloviev, Dmitry A; Hazen, Stanley L; Szpak, Dorota et al. (2014) Dual role of the leukocyte integrin ?M?2 in angiogenesis. J Immunol 193:4712-21
Huang, Menggui; Gong, Yanqing; Grondolsky, Jessica et al. (2014) Lp(a)/apo(a) modulate MMP-9 activation and neutrophil cytokines in vivo in inflammation to regulate leukocyte recruitment. Am J Pathol 184:1503-17
Das, Riku; Ganapathy, Swetha; Settle, Megan et al. (2014) Plasminogen promotes macrophage phagocytosis in mice. Blood 124:679-88
DiDonato, Joseph A; Aulak, Kulwant; Huang, Ying et al. (2014) Site-specific nitration of apolipoprotein A-I at tyrosine 166 is both abundant within human atherosclerotic plaque and dysfunctional. J Biol Chem 289:10276-92
Das, Riku; Ganapathy, Swetha; Mahabeleshwar, Ganapati H et al. (2013) Macrophage gene expression and foam cell formation are regulated by plasminogen. Circulation 127:1209-18, e1-16
DiDonato, Joseph A; Huang, Ying; Aulak, Kulwant S et al. (2013) Function and distribution of apolipoprotein A1 in the artery wall are markedly distinct from those in plasma. Circulation 128:1644-55
Huang, Ying; Wu, Zhiping; Riwanto, Meliana et al. (2013) Myeloperoxidase, paraoxonase-1, and HDL form a functional ternary complex. J Clin Invest 123:3815-28
Das, R; Plow, E F (2011) Phosphatidylserine as an anchor for plasminogen and its plasminogen receptor, histone H2B, to the macrophage surface. J Thromb Haemost 9:339-49
Plow, Edward F; Das, Riku (2009) Enolase-1 as a plasminogen receptor. Blood 113:5371-2

Showing the most recent 10 out of 64 publications