Alveolar type II epithelial cells are critical for maintaining the gas exchange units of the lung. They produce pulmonary surfactant and restore the alveolar epithelium after injury. Keratinocyte growth factor (KGF) is a known mitogen for type II cells, stimulates type II cell differentiation in vitro, and protects the lung against a variety of injuries. In this proposal, we will examine the effects of KGF and other factors on the synthesis of fatty acids and phospholipids, which comprise the lipid components of pulmonary surfactant. KGF greatly stimulates overall phospholipid synthesis in vitro and specifically increases synthesis of phosphatidylcholine, disaturated phosphatidylcholine, and phosphatidylglycerol. In the first specific aim, we will determine the mechanism by which KGF stimulates fatty acid synthesis in rat type II cells. Based on our preliminary data, we believe the KGF stimulates fatty acid synthesis by activation of a coordinated group of transcription factors that include SREBP-1c and C/EBP isoforms. In addition, we will determine if ligands for LXRs, which increase SREBP-1c, increase surfactant production and lipogenic enzymes in vivo. A final portion of this specific aim will be to define the signaling pathways that increase lipogenic enzymes in response to KGF. Our focus will be on Akt, and its ability to regulate SREBP-1c and C/EBPa. The second specific aim will be to determine the regulation of surfactant phospholipid synthesis in primary cultures of human alveolar type II cells. The focus will be on SREBP-1c regulation of fatty acid synthesis in human type II cells. In the third specific aim we will characterize a novel acyltransferase that is selectively and highly expressed in type cells and whose mRNA level is increased 8-fold by KGF. We believe that this is a new glycerophospholipid acyltransferase that prefers lysoPC as the substrate and palmitoyl-CoA as the acyl donor. Specifically, the acyltransferase is important for the synthesis of dipalmitoylphosphatidylcholine (DPPC), the critical lipid in surfactant This proposal should greatly improve our understanding of the regulation of lipid metabolism in alveolar type II cells and should define potential regulatory targets for drug development in the future. This study will use adult human type II cells to determine mechanisms of surfactant production and identify molecular targets for the development of drugs for increasing surfactant production. In the future, such drugs could be used to treat acute lung injury, acute respiratory distress syndrome, respiratory distress of the newborn, severe pneumonias and diseases of small airways such as asthma.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL029891-25
Application #
7379943
Study Section
Lung Injury, Repair, and Remodeling Study Section (LIRR)
Program Officer
Blaisdell, Carol J
Project Start
1983-01-01
Project End
2010-03-31
Budget Start
2008-04-01
Budget End
2010-03-31
Support Year
25
Fiscal Year
2008
Total Cost
$378,510
Indirect Cost
Name
National Jewish Health
Department
Type
DUNS #
076443019
City
Denver
State
CO
Country
United States
Zip Code
80206
Qian, Zhaohui; Travanty, Emily A; Oko, Lauren et al. (2013) Innate immune response of human alveolar type II cells infected with severe acute respiratory syndrome-coronavirus. Am J Respir Cell Mol Biol 48:742-8
Bridges, James P; Lin, Sui; Ikegami, Machiko et al. (2012) Conditional hypoxia inducible factor-1? induction in embryonic pulmonary epithelium impairs maturation and augments lymphangiogenesis. Dev Biol 362:24-41
Kosmider, Beata; Messier, Elise M; Chu, Hong Wei et al. (2011) Human alveolar epithelial cell injury induced by cigarette smoke. PLoS One 6:e26059
Wang, Jieru; Nikrad, Mrinalini P; Phang, Tzulip et al. (2011) Innate immune response to influenza A virus in differentiated human alveolar type II cells. Am J Respir Cell Mol Biol 45:582-91
Finigan, James H; Faress, Jihane A; Wilkinson, Emily et al. (2011) Neuregulin-1-human epidermal receptor-2 signaling is a central regulator of pulmonary epithelial permeability and acute lung injury. J Biol Chem 286:10660-70
Ito, Yoko; Ahmad, Aftab; Kewley, Emily et al. (2011) Hypoxia-inducible factor regulates expression of surfactant protein in alveolar type II cells in vitro. Am J Respir Cell Mol Biol 45:938-45
Kosmider, Beata; Loader, Joan E; Murphy, Robert C et al. (2010) Apoptosis induced by ozone and oxysterols in human alveolar epithelial cells. Free Radic Biol Med 48:1513-24
Ito, Yoko; Mason, Robert J (2010) The effect of interleukin-13 (IL-13) and interferon-ýý (IFN-ýý) on expression of surfactant proteins in adult human alveolar type II cells in vitro. Respir Res 11:157
Bridges, James P; Ikegami, Machiko; Brilli, Lauren L et al. (2010) LPCAT1 regulates surfactant phospholipid synthesis and is required for transitioning to air breathing in mice. J Clin Invest 120:1736-48
Cao, Yuxia; Vo, Tiffany; Millien, Guetchyn et al. (2010) Epigenetic mechanisms modulate thyroid transcription factor 1-mediated transcription of the surfactant protein B gene. J Biol Chem 285:2152-64

Showing the most recent 10 out of 105 publications