The early events of severe sepsis set in motion a cascade of mechanisms, which significantly contribute to both the acute and chronic morbidity and mortality associated with this syndrome. While sepsis has often been viewed as a deadly acute disease, it also has insidious long-term consequences. Clinical data underscores the high mortality rates associated with patients who are long-term survivors of the acute septic episode. Within eight years of surviving severe sepsis, there is an 80% predicted mortality rate, with many patients succumbing to cancer and inflammatory lung complications. In this revised, renewal application we will expand our previous investigations of acute systemic disease and focus on the cellular and molecular mechanisms which cause sepsis-induced long-term immune dysregulation. We have established an experimental model of severe sepsis (cecal ligation and puncture-CLP) which results in a long-term survival rate of approximately 60%. Our preliminary studies have demonstrated that these CLP survivors are susceptible to an innocuous microbe challenge with high mortality weeks after recovery, while 100% of the sham animals survive. The mechanism for the lingering susceptibility appears related to the initial depletion of DC populations and the subsequent "re-seeding" of tissue by impaired DCs that have undergone epigenetic changes, altering cytokine expression. We hypothesize that the long-term consequences of severe sepsis are caused by altered dendritic cell populations, as innate and acquired immune functions of re-seeded bone marrow-derived dendritic cells are modified via novel mechanisms, including epigenetic modifications, contributing to the altered immune functions that follows severe sepsis. Our studies will focus on the following Specific Aims: 1) To identify the contribution of dendritic cell subsets to the general pathology, cytokine expression, and alterations in immune cell function in long-term survivors of mild (90% survivors) and severe (50-60% survivors) experimental sepsis. 2) To determine the mechanism(s) responsible for the immunoregulation found in long-term survivors of severe sepsis by assessing novel mechanisms, including epigenetic modifications, that affect the expression of key immune cell-derived cytokine genes, and 3) To develop efficacious therapies to restore dendritic cell function after severe sepsis via adoptive cell transfer strategies and the pharmacologic targeting of epigenetic alterations.

Public Health Relevance

Sepsis is a severe, life threatening disease that can affect multiple organs in the body. This disease is usually described as an acute disorder, but recent clinical studies have shown that there are medical consequences, which last for years after patients are released from the intensive care unit. We have experimentally modeled the long-term effects of severe sepsis and have uncovered important mechanisms that lead to impaired immune cell function associated with the chronic aspect of this disease.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL031237-27
Application #
8197544
Study Section
Surgery, Anesthesiology and Trauma Study Section (SAT)
Program Officer
Harabin, Andrea L
Project Start
1984-01-01
Project End
2013-12-31
Budget Start
2012-01-01
Budget End
2012-12-31
Support Year
27
Fiscal Year
2012
Total Cost
$373,215
Indirect Cost
$125,715
Name
University of Michigan Ann Arbor
Department
Pathology
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Cavassani, Karen A; Moreira, Ana Paula; Habiel, David et al. (2013) Toll like receptor 3 plays a critical role in the progression and severity of acetaminophen-induced hepatotoxicity. PLoS One 8:e65899
Ishii, Makoto; Asano, Koichiro; Namkoong, Ho et al. (2012) CRTH2 is a critical regulator of neutrophil migration and resistance to polymicrobial sepsis. J Immunol 188:5655-64
Ito, Toshihiro; Connett, Judith M; Kunkel, Steven L et al. (2012) Notch system in the linkage of innate and adaptive immunity. J Leukoc Biol 92:59-65
Cuenca, Alex G; Wynn, James L; Kelly-Scumpia, Kindra M et al. (2011) Critical role for CXC ligand 10/CXC receptor 3 signaling in the murine neonatal response to sepsis. Infect Immun 79:2746-54
Ito, Toshihiro; Carson 4th, William F; Cavassani, Karen A et al. (2011) CCR6 as a mediator of immunity in the lung and gut. Exp Cell Res 317:613-9
Ito, Toshihiro; Allen, Ronald M; Carson 4th, William F et al. (2011) The critical role of Notch ligand Delta-like 1 in the pathogenesis of influenza A virus (H1N1) infection. PLoS Pathog 7:e1002341
Carson 4th, William F; Ito, Toshihiro; Schaller, Matthew et al. (2011) Dysregulated cytokine expression by CD4+ T cells from post-septic mice modulates both Th1 and Th2-mediated granulomatous lung inflammation. PLoS One 6:e20385
Carson, William F; Cavassani, Karen A; Dou, Yali et al. (2011) Epigenetic regulation of immune cell functions during post-septic immunosuppression. Epigenetics 6:273-83
Cavassani, Karen A; Carson 4th, William F; Moreira, Ana Paula et al. (2010) The post sepsis-induced expansion and enhanced function of regulatory T cells create an environment to potentiate tumor growth. Blood 115:4403-11
Carson 4th, William F; Cavassani, Karen A; Ito, Toshihiro et al. (2010) Impaired CD4+ T-cell proliferation and effector function correlates with repressive histone methylation events in a mouse model of severe sepsis. Eur J Immunol 40:998-1010

Showing the most recent 10 out of 102 publications