Hypertension (HTN) is the single most prevalent risk factor for cardiovascular disease, diabetes, obesity, and metabolic syndrome. Despite advances in lifestyle modification and multi-drug based therapies, 20-30% of all hypertensive patients remain resistant with uncontrolled high blood pressure. These patients exhibit autonomic dysregulation due to elevated sympathetic activity and norepinephrine (NE) spillover, and low parasympathetic activity, indicating that their HTN is of neurogenic origin. Thus, we believe that a mechanism-based breakthrough is imperative to develop novel strategies to prevent and perhaps even cure neurogenic hypertension. Our evidence of a dysfunctional neural-bone marrow (BM) communication in neurogenic hypertension represents this breakthrough. Based on our published and preliminary data and evidence from the literature, we propose the following hypothesis: hypertensive signals such as increased angiotensin II are recognized by the hypothalamic paraventricular nucleus (PVN), resulting in activation of resident microglia, an increase in activity of pre-autonomic neurons, and enhancement of sympathetic drive to the BM. This autonomic imbalance to the BM leads to an increase in inflammatory cells that mobilize to the brain, differentiate into activated microglia, and perpetuate the hypertensive state.
Four specific aims are proposed to support/refute the brain-BM axis hypothesis and provide conceptual support for its translation into a formal clinical trial:
Aim 1 investigates the hypothesis that Ang II-induced increases in microglial activation in the PVN, mediated by the CCL2/CCR2 chemokine system, are key early events in enhancing SNA in HTN.
Aim 2 investigates the hypothesis that sympathetic nerve activity to the BM is increased in Ang II-induced HTN.
Aim 3 evaluates the hypothesis that extravasation of BM inflammatory progenitor cells to the PVN contributes to overall increase in activated microglia in HTN.
Aim 4 investigates the hypothesis that minocycline treatment would produce antihypertensive effects in drug-resistant hypertensive patients by decreasing cerebral microglia activity. These studies will utilize state-of-the-art integrative physiological genomic techniques including chronic brain and bone marrow cell/tissue specific gene modification, imaging in animals and humans, electrophysiological recordings of sympathetic fibers to the BM and pre-autonomic neurons, to support our novel hypothesis. Thus, outcomes of this investigation will be valuable for paradigm changing approaches for the treatment of resistant neurogenic hypertension.

Public Health Relevance

Hypertension (HTN) is the single biggest risk factor for cardiovascular disease, diabetes, obesity, and metabolic syndrome, and despite changes in lifestyle and the availability of multi-drug based therapies, 20- 30% of hypertensive patients stil have uncontrolled or neurogenic high blood pressure characterized by sustained activation of the sympathetic nerves that ultimately tell blood vessels to constrict and raise blood pressure. In this project we first aim to understand why the sympathetic nerves become permanently overactive, and our studies are focusing on the role of the brain and peripheral immune system in causing this overactivity. We will further determine whether administration of a drug that inhibits the activity of these immune cells will lower blood pressure in patients with uncontrolled neurogenic hypertension, and so we believe that this work will have an immediate impact in developing innovative strategies for the treatment of currently uncontrollable resistant hypertension.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL033610-30
Application #
8895374
Study Section
Hypertension and Microcirculation Study Section (HM)
Program Officer
Maric-Bilkan, Christine
Project Start
1996-09-01
Project End
2016-05-31
Budget Start
2015-08-01
Budget End
2016-05-31
Support Year
30
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of Florida
Department
Physiology
Type
Schools of Medicine
DUNS #
969663814
City
Gainesville
State
FL
Country
United States
Zip Code
32611
Walejko, Jacquelyn M; Kim, Seungbum; Goel, Ruby et al. (2018) Gut microbiota and serum metabolite differences in African Americans and White Americans with high blood pressure. Int J Cardiol 271:336-339
Smith, Steven M; Gurka, Matthew J; Calhoun, David A et al. (2018) Optimal Systolic Blood Pressure Target in Resistant and Non-Resistant Hypertension: A Pooled Analysis of Patient-Level Data from SPRINT and ACCORD. Am J Med 131:1463-1472.e7
Stevens, Bruce R; Goel, Ruby; Seungbum, Kim et al. (2018) Increased human intestinal barrier permeability plasma biomarkers zonulin and FABP2 correlated with plasma LPS and altered gut microbiome in anxiety or depression. Gut 67:1555-1557
Wang, Lei A; de Kloet, Annette D; Smeltzer, Michael D et al. (2018) Coupling corticotropin-releasing-hormone and angiotensin converting enzyme 2 dampens stress responsiveness in male mice. Neuropharmacology 133:85-93
Kim, Seungbum; Goel, Ruby; Kumar, Ashok et al. (2018) Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin Sci (Lond) 132:701-718
Wei, Janet; Bakir, May; Darounian, Navid et al. (2018) Myocardial Scar Is Prevalent and Associated With Subclinical Myocardial Dysfunction in Women With Suspected Ischemia But No Obstructive Coronary Artery Disease: From the Women's Ischemia Syndrome Evaluation-Coronary Vascular Dysfunction Study. Circulation 137:874-876
Zubcevic, Jasenka; Santisteban, Monica M; Perez, Pablo D et al. (2017) A Single Angiotensin II Hypertensive Stimulus Is Associated with Prolonged Neuronal and Immune System Activation in Wistar-Kyoto Rats. Front Physiol 8:592
Santisteban, Monica M; Qi, Yanfei; Zubcevic, Jasenka et al. (2017) Hypertension-Linked Pathophysiological Alterations in the Gut. Circ Res 120:312-323
de Kloet, Annette D; Wang, Lei; Pitra, Soledad et al. (2017) A Unique ""Angiotensin-Sensitive"" Neuronal Population Coordinates Neuroendocrine, Cardiovascular, and Behavioral Responses to Stress. J Neurosci 37:3478-3490
Steckelings, U Muscha; Kloet, Annette de; Sumners, Colin (2017) Centrally Mediated Cardiovascular Actions of the Angiotensin II Type 2 Receptor. Trends Endocrinol Metab 28:684-693

Showing the most recent 10 out of 127 publications