. We now understand that CENP-F is a powerful regulator of microtubule (MT) function that controls diverse cell functions. Loss of CENP-F function in the early embryo results in minor changes in cardiac morphogenesis but fully penetrant, late adult-onset dilated cardiomyopathy (DCM). This was the first report demonstrating that disruption of any MT-associated protein causes heart disease, thus setting a novel but long predicted paradigm. Further, identification of a human family with a CENP-F mutation leading to multiple defects including the heart increases the significance of our work. Importantly, we have now discovered that loss of CENP-F function results in a hyper-stabilized MT network that is at increased risk with intervention of chemotherapeutics targeting MT function. Indeed, these drugs cause DCM in a significant subset of human cancer patients. These paradigm-setting data, our genetic models, and collective expertise uniquely position us to make ground-breaking and clinically relevant advances impacting human health. We have two integrated and major goals. Our first goal is to determine the precise role(s) of CENP-F and the MT network in specific events during cardiac development and how their loss of function subsequently leads to heart disease. These studies are essential for a mechanistic understanding of CENP-F function in development and in the etiology of DCM. Knowing that loss of CENP-F function hyper-stabilizes the MT network, a second independent yet interactive goal is to determine whether "MT fragile" hearts are at increased risk with chemotherapeutics: 1. only from a second hit directed specifically at MTs, 2. at even greater risk from a broader hit attacking MTs and other targets, and/or 3. at generalized risk from an "off target" hit that does not attack MTs. Thus, the proposed studies will provide a fundamental understanding of CENP-F/MT function in cardiogenesis and lead to concrete advances in the analysis of cardiovascular disease caused by chemotherapeutic intervention.

Public Health Relevance

Heart development is a complex series of events and its disruption can lead to cardiac defects and disease. Loss of CENP-F, a microtubule-associated protein, in the embryo leads to adult onset disease and it is likely that CENP-/- hearts are susceptible to chemotherapeutics that target microtubules. Our proposed studies will determine which developmental events are disrupted with loss of CENP-F and identify strategies to prevent further problems with heart function with chemotherapeutic intervention is needed.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Cardiovascular Differentiation and Development Study Section (CDD)
Program Officer
Schramm, Charlene A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Vanderbilt University Medical Center
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Moynihan, Katherine L; Pooley, Ryan; Miller, Paul M et al. (2009) Murine CENP-F regulates centrosomal microtubule nucleation and interacts with Hook2 at the centrosome. Mol Biol Cell 20:4790-803
Pooley, Ryan D; Moynihan, Katherine L; Soukoulis, Victor et al. (2008) Murine CENPF interacts with syntaxin 4 in the regulation of vesicular transport. J Cell Sci 121:3413-21
Smith, T K; Hager, H A; Francis, R et al. (2008) Bves directly interacts with GEFT, and controls cell shape and movement through regulation of Rac1/Cdc42 activity. Proc Natl Acad Sci U S A 105:8298-303
Robertson, J Brian; Zhu, Tianli; Nasreen, Shampa et al. (2008) CMF1-Rb interaction promotes myogenesis in avian skeletal myoblasts. Dev Dyn 237:1424-33
Smith, Travis K; Bader, David M (2007) Signals from both sides: Control of cardiac development by the endocardium and epicardium. Semin Cell Dev Biol 18:84-9
Pooley, Ryan D; Reddy, Samyukta; Soukoulis, Victor et al. (2006) CytLEK1 is a regulator of plasma membrane recycling through its interaction with SNAP-25. Mol Biol Cell 17:3176-86
Ripley, Anna N; Osler, Megan E; Wright, Christopher V E et al. (2006) Xbves is a regulator of epithelial movement during early Xenopus laevis development. Proc Natl Acad Sci U S A 103:614-9
Dees, Ellen; Robertson, J Brian; Zhu, Tianli et al. (2006) Specific deletion of CMF1 nuclear localization domain causes incomplete cell cycle withdrawal and impaired differentiation in avian skeletal myoblasts. Exp Cell Res 312:3000-14
Osler, Megan E; Chang, Min S; Bader, David M (2005) Bves modulates epithelial integrity through an interaction at the tight junction. J Cell Sci 118:4667-78
Dees, Ellen; Robertson, J Brian; Ashe, Mabelle et al. (2005) LEK1 protein expression in normal and dysregulated cardiomyocyte mitosis. Anat Rec A Discov Mol Cell Evol Biol 286:823-32

Showing the most recent 10 out of 36 publications