In this grant's competitive renewal (years 25-29), we will test the hypothesis that Hypoxia Inducible Factor (HIF) regulates endothelial barrier repair a the level of adherens junctions (AJs) through transcriptional expression of the AJ proteins Vascular Endothelial (VE)-cadherin and Vascular Endothelial-Protein Tyrosine Phosphatase (VE-PTP). We will take advantage of mouse models in which expression of genes in endothelial cells are modified and which we have on-hand [e.g., endothelial cell-specific and inducible disruption of Hif1? or Hif2? genes]. We will investigate mechanisms of VE-cadherin and VE-PTP expression and their important role in homeostatically restoring lung AJ integrity and tissue fluid balance and polymorphonuclear leukocyte (PMN) trafficking in lungs.
The specific aims of the proposed studies are:
AIM 1 : To determine the role of HIF-dependent expression of VE-cadherin and VE-PTP as an adaptive mechanism that induces AJ strengthening and re-sealing and thereby restores endothelial barrier integrity and lung fluid balance. Hypothesis: HIF-induced VE-cadherin and VE-PTP expression after inflammatory lung injury leads to strengthening of the AJ barrier and increased restrictiveness of lung endothelial barrier to plasma proteins and inflammatory cells. This HIF activated feedback mechanism functions to restore lung endothelial barrier function and fluid balance. Here we will determine whether HIF1? and HIF2? have the complementary function on AJs in enhancing barrier recovery after injury. We will also address the concept that full barrier restoration requires re-sealing of the A barrier secondary to activation of the RhoGTPases Rac1 and Cdc42 in addition to the AJ strengthening function of HIF transcriptional activity.
AIM 2 : To determine the role of prolyl hydroxylase-2 (PHD2), a druggable target, using genetically modified mice in strengthening endothelial AJs through stabilization of HIFs, and thereby in restoring lung vascular integrity and normalizing trans-endothelial trafficking of inflammatory cells. Hypothesis: PHD2 inhibition functions by stabilizing HIFs and thereby restores endothelial AJ integrity secondary to expression of VE-cadherin and VE-PTP and prevents vascular injury and inflammation. With the completion of these aims, we hope to define the mechanisms by which HIF signaling promotes lung vascular barrier integrity and fluid balance and whether PHDs serve as targets to prevent persistent lung vascular leakiness and edema associated with inflammatory lung injury.

Public Health Relevance

The focus of the work is the lung endothelium, in which the studies will establish the relevance of hypoxia inducible factors, HIF1a and HIF2a and the upstream prolyl hydroxylases, in the pathophysiology of ALI/ARDS. The study will define whether activation of HIF through inhibition of PHDs, potentially druggable targets, are a fundamental adaptive mechanism that restore endothelial barrier function and prevent lung edema in the context of lung inflammation and ALI/ARDS.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
2R01HL045638-26A1
Application #
8704664
Study Section
Surgery, Anesthesiology and Trauma Study Section (SAT)
Program Officer
Harabin, Andrea L
Project Start
1993-06-11
Project End
2018-03-31
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
26
Fiscal Year
2014
Total Cost
$319,000
Indirect Cost
$119,000
Name
University of Illinois at Chicago
Department
Biochemistry
Type
Schools of Medicine
DUNS #
098987217
City
Chicago
State
IL
Country
United States
Zip Code
60612
Komarova, Yulia; Kruse, Kevin J; Mehta, Dolly et al. (2017) Response by Komarova et al to Letter Regarding Article, ""Protein Interactions at Endothelial Junctions and Signaling Mechanisms Regulating Endothelial Permeability"". Circ Res 120:e28
Soni, Dheeraj; Regmi, Sushil C; Wang, Dong-Mei et al. (2017) Pyk2 phosphorylation of VE-PTP downstream of STIM1-induced Ca2+ entry regulates disassembly of adherens junctions. Am J Physiol Lung Cell Mol Physiol 312:L1003-L1017
Jiang, Chunling; Liu, Zheng; Hu, Rong et al. (2017) Inactivation of Rab11a GTPase in Macrophages Facilitates Phagocytosis of Apoptotic Neutrophils. J Immunol 198:1660-1672
Cheng, Kwong Tai; Xiong, Shiqin; Ye, Zhiming et al. (2017) Caspase-11-mediated endothelial pyroptosis underlies endotoxemia-induced lung injury. J Clin Invest 127:4124-4135
Marsboom, Glenn; Chen, Zhenlong; Yuan, Yang et al. (2017) Aberrant caveolin-1-mediated Smad signaling and proliferation identified by analysis of adenine 474 deletion mutation (c.474delA) in patient fibroblasts: a new perspective on the mechanism of pulmonary hypertension. Mol Biol Cell 28:1177-1185
Yamada, Kaori H; Kang, Hojin; Malik, Asrar B (2017) Antiangiogenic Therapeutic Potential of Peptides Derived from the Molecular Motor KIF13B that Transports VEGFR2 to Plasmalemma in Endothelial Cells. Am J Pathol 187:214-224
Komarova, Yulia A; Kruse, Kevin; Mehta, Dolly et al. (2017) Protein Interactions at Endothelial Junctions and Signaling Mechanisms Regulating Endothelial Permeability. Circ Res 120:179-206
Cantelmo, Anna Rita; Conradi, Lena-Christin; Brajic, Aleksandra et al. (2016) Inhibition of the Glycolytic Activator PFKFB3 in Endothelium Induces Tumor Vessel Normalization, Impairs Metastasis, and Improves Chemotherapy. Cancer Cell 30:968-985
Klomp, Jennifer E; Huyot, Vincent; Ray, Anne-Marie et al. (2016) Mimicking transient activation of protein kinases in living cells. Proc Natl Acad Sci U S A 113:14976-14981
Mittal, Manish; Tiruppathi, Chinnaswamy; Nepal, Saroj et al. (2016) TNF?-stimulated gene-6 (TSG6) activates macrophage phenotype transition to prevent inflammatory lung injury. Proc Natl Acad Sci U S A 113:E8151-E8158

Showing the most recent 10 out of 139 publications