In this grant's competitive renewal (years 25-29), we will test the hypothesis that Hypoxia Inducible Factor (HIF) regulates endothelial barrier repair a the level of adherens junctions (AJs) through transcriptional expression of the AJ proteins Vascular Endothelial (VE)-cadherin and Vascular Endothelial-Protein Tyrosine Phosphatase (VE-PTP). We will take advantage of mouse models in which expression of genes in endothelial cells are modified and which we have on-hand [e.g., endothelial cell-specific and inducible disruption of Hif1? or Hif2? genes]. We will investigate mechanisms of VE-cadherin and VE-PTP expression and their important role in homeostatically restoring lung AJ integrity and tissue fluid balance and polymorphonuclear leukocyte (PMN) trafficking in lungs.
The specific aims of the proposed studies are:
AIM 1 : To determine the role of HIF-dependent expression of VE-cadherin and VE-PTP as an adaptive mechanism that induces AJ strengthening and re-sealing and thereby restores endothelial barrier integrity and lung fluid balance. Hypothesis: HIF-induced VE-cadherin and VE-PTP expression after inflammatory lung injury leads to strengthening of the AJ barrier and increased restrictiveness of lung endothelial barrier to plasma proteins and inflammatory cells. This HIF activated feedback mechanism functions to restore lung endothelial barrier function and fluid balance. Here we will determine whether HIF1? and HIF2? have the complementary function on AJs in enhancing barrier recovery after injury. We will also address the concept that full barrier restoration requires re-sealing of the A barrier secondary to activation of the RhoGTPases Rac1 and Cdc42 in addition to the AJ strengthening function of HIF transcriptional activity.
AIM 2 : To determine the role of prolyl hydroxylase-2 (PHD2), a druggable target, using genetically modified mice in strengthening endothelial AJs through stabilization of HIFs, and thereby in restoring lung vascular integrity and normalizing trans-endothelial trafficking of inflammatory cells. Hypothesis: PHD2 inhibition functions by stabilizing HIFs and thereby restores endothelial AJ integrity secondary to expression of VE-cadherin and VE-PTP and prevents vascular injury and inflammation. With the completion of these aims, we hope to define the mechanisms by which HIF signaling promotes lung vascular barrier integrity and fluid balance and whether PHDs serve as targets to prevent persistent lung vascular leakiness and edema associated with inflammatory lung injury.

Public Health Relevance

The focus of the work is the lung endothelium, in which the studies will establish the relevance of hypoxia inducible factors, HIF1a and HIF2a and the upstream prolyl hydroxylases, in the pathophysiology of ALI/ARDS. The study will define whether activation of HIF through inhibition of PHDs, potentially druggable targets, are a fundamental adaptive mechanism that restore endothelial barrier function and prevent lung edema in the context of lung inflammation and ALI/ARDS.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Surgery, Anesthesiology and Trauma Study Section (SAT)
Program Officer
Harabin, Andrea L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Illinois at Chicago
Schools of Medicine
United States
Zip Code
Gong, Haixia; An, Shejuan; Sassmann, Antonia et al. (2016) PAR1 Scaffolds TGFβRII to Downregulate TGF-β Signaling and Activate ESC Differentiation to Endothelial Cells. Stem Cell Reports 7:1050-1058
Liu, Yuru; Kumar, Varsha Suresh; Zhang, Wei et al. (2015) Activation of type II cells into regenerative stem cell antigen-1(+) cells during alveolar repair. Am J Respir Cell Mol Biol 53:113-24
Daneshjou, Nazila; Sieracki, Nathan; van Nieuw Amerongen, Geerten P et al. (2015) Rac1 functions as a reversible tension modulator to stabilize VE-cadherin trans-interaction. J Cell Biol 208:23-32
Mittal, Manish; Urao, Norifumi; Hecquet, Claudie M et al. (2015) Novel role of reactive oxygen species-activated Trp melastatin channel-2 in mediating angiogenesis and postischemic neovascularization. Arterioscler Thromb Vasc Biol 35:877-87
Gong, Haixia; Rehman, Jalees; Tang, Haiyang et al. (2015) HIF2α signaling inhibits adherens junctional disruption in acute lung injury. J Clin Invest 125:652-64
Chignalia, Andreia Z; Vogel, Stephen M; Reynolds, Albert B et al. (2015) p120-catenin expressed in alveolar type II cells is essential for the regulation of lung innate immune response. Am J Pathol 185:1251-63
Mittal, Manish; Siddiqui, Mohammad Rizwan; Tran, Khiem et al. (2014) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20:1126-67
Park, Changwon; Kim, Tae Min; Malik, Asrar B (2013) Transcriptional regulation of endothelial cell and vascular development. Circ Res 112:1380-400
Wang, Zhenjia; Malik, Asrar B (2013) Nanoparticles squeezing across the blood-endothelial barrier via caveolae. Ther Deliv 4:131-3
Vandenbroucke St Amant, Emily; Tauseef, Mohammad; Vogel, Stephen M et al. (2012) PKCα activation of p120-catenin serine 879 phospho-switch disassembles VE-cadherin junctions and disrupts vascular integrity. Circ Res 111:739-49

Showing the most recent 10 out of 128 publications