Although inflammation is an essential host defense mechanism during lung infection, its timely resolution is critical for the host to prevent lung injuries resulting from uncontrolled inflammatory cells. Recently we discovered that MUC1, one of the membrane-tethered mucins expressed on the apical surface of airway epithelial cells, has an ability to control inflammation at the end of airway Pseudomonas aeruginosa (Pa) infection by suppressing toll-like receptor (TLR)5 signaling. In this renewal application, we propose to elucidate the mechanism by which MUC1 suppresses TLR5 during Pa infection. We hypothesize that MUC1 suppresses TLR5 signaling during Pa infection by a direct interaction with TLR5 which is mediated through activation of EGFR and propose the following aims to test the hypothesis.
In Aim 1, we will determine whether anti-inflammatory effect of MUC1 during airway Pa infection is due to its direct interaction with TLR5 by examining the details of molecular interactions between MUC1 and TLR5 in cultured epithelial cells using both genetic and immunological methods.
In Aim 2, we will determine whether the interaction of MUC1 with TLR5 is regulated by tyrosine phosphorylation of MUC1 by EGFR in cultured cells using genetic as well as immunological methods and such role of EGFR will be verified using EGFR deficient mice. In the final Aim 3, the complete sequence of the events that take place from Pa infection to the resolution of inflammation by MUC1 will be monitored in real time using both cultured cells and in vivo animals. Successful completion of these experiments will provide the detailed molecular interactions associated with the anti-inflammatory role of MUC1 during airway Pa infection and should provide insights into possible therapeutic strategies to control excessive and prolonged lung inflammation characteristic of chronic inflammatory lung diseases such as COPD and cystic fibrosis.

Public Health Relevance

Chronic lung inflammatory diseases such as COPD, asthma and cystic fibrosis develop as a result of failure to control lung inflammation in a timely manner. MUC1 is a new anti- inflammatory molecule that prevents excessive inflammation during airway infection. Understanding how MUC1 controls excessive lung inflammation will help us to better understand the pathophysiology of these lung diseases and may provide insights into possible therapeutic strategies to treat these inflammatory lung diseases.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
7R01HL047125-22
Application #
8882503
Study Section
Lung Cellular, Molecular, and Immunobiology Study Section (LCMI)
Program Officer
Macgarvey, Nancy
Project Start
1991-01-07
Project End
2017-06-30
Budget Start
2015-07-01
Budget End
2017-06-30
Support Year
22
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of Arizona
Department
Otolaryngology
Type
Schools of Medicine
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Kato, Kosuke; Zemskova, Marina A; Hanss, Alec D et al. (2017) Muc1 deficiency exacerbates pulmonary fibrosis in a mouse model of silicosis. Biochem Biophys Res Commun 493:1230-1235
Kato, Kosuke; Hanss, Alec D; Zemskova, Marina A et al. (2017) Pseudomonas aeruginosa increases MUC1 expression in macrophages through the TLR4-p38 pathway. Biochem Biophys Res Commun 492:231-235
Xu, Xiuling; Chen, Wenshu; Leng, Shuguang et al. (2017) Muc1 knockout potentiates murine lung carcinogenesis involving an epiregulin-mediated EGFR activation feedback loop. Carcinogenesis 38:604-614
Kato, Kosuke; Uchino, Reina; Lillehoj, Erik P et al. (2016) Membrane-Tethered MUC1 Mucin Counter-Regulates the Phagocytic Activity of Macrophages. Am J Respir Cell Mol Biol 54:515-23
Kato, Kosuke; Lillehoj, Erik P; Kim, Kwang Chul (2016) Pseudomonas aeruginosa stimulates tyrosine phosphorylation of and TLR5 association with the MUC1 cytoplasmic tail through EGFR activation. Inflamm Res 65:225-33
Lillehoj, Erik P; Hyun, Sang Won; Liu, Anguo et al. (2015) NEU1 Sialidase Regulates Membrane-tethered Mucin (MUC1) Ectodomain Adhesiveness for Pseudomonas aeruginosa and Decoy Receptor Release. J Biol Chem 290:18316-31
Xu, Xiuling; Wells, Alexandria; Padilla, Mabel T et al. (2014) A signaling pathway consisting of miR-551b, catalase and MUC1 contributes to acquired apoptosis resistance and chemoresistance. Carcinogenesis 35:2457-66
Xu, Xiuling; Padilla, Mabel T; Li, Bilan et al. (2014) MUC1 in macrophage: contributions to cigarette smoke-induced lung cancer. Cancer Res 74:460-70
Kato, Kosuke; Lillehoj, Erik P; Kim, Kwang Chul (2014) MUC1 regulates epithelial inflammation and apoptosis by PolyI:C through inhibition of Toll/IL-1 receptor-domain-containing adapter-inducing IFN-? (TRIF) recruitment to Toll-like receptor 3. Am J Respir Cell Mol Biol 51:446-54
Guang, Wei; Czinn, Steven J; Blanchard, Thomas G et al. (2014) Genetic regulation of MUC1 expression by Helicobacter pylori in gastric cancer cells. Biochem Biophys Res Commun 445:145-50

Showing the most recent 10 out of 57 publications