Congenital heart defects are the most common developmental anomaly and are the leading non- infectious cause of mortality in newborns, underscoring the importance of studying the underlying causes. Our goal is to elucidate the genetic basis of these diseases. We and others have initially used Drosophila genetics to identify and define a first set of 'cardiogenic'genes that specify the heart within the embryo. The insights from Drosophila have served as a prototype for elucidating fundamentally conserved mechanisms of cardiac development throughout the animal kingdom. More recently our lab has begun to study how the heart tube is assembled and how heart function is established after the initial heart specification events. In this pursuit, we have discovered that the cardiogenic network of transcription factors, encoded by homeobox-, GATA- and T-box genes (eg. tinman/Nkx2-5), in addition to orchestrating the initiation of heart development, is again playing a critical role in establishing and maintaining healthy heart. Importantly, their human homologs also take part in the regulation of cardiac morphogenesis and functional properties. It is thus critical to understand the genetic relationships and functional requirements of these genes (and their interactors and effectors), not only during development but also in the fully formed mature heart. The proposed studies are expected to provide fundamental insights into human heart disease mechanisms and uncover new heart disease candidates, with particular focus on polygenic modulators of the core cardiogeneic network of transcription factors. As polygenic heart disease mechanisms are very difficult to study in mammalian systems, the proposed approaches in the Drosophila heart during morphogenesis and in the adult heart are highly significant and promising. The outcome is likely to serve as an important paradigm for identifying new heart disease mechanisms.
In Aim 1, we plan to determine the network of interactions between the core set of cardiogenic transcription factors in regulating various aspects of heart function and determine the rescue capacity of potential effector genes (Aim 1a). We also plan to study the role and genetic relationships of candidate heart genes, based on their interaction with tinman and pannier (Aim 1b&c).
In Aim 2, we plan to study the genetic mechanisms of cardiac morphogenesis and heart tube assembly, based on our previous findings with Nmr/Tbx20 and tinman interacting genes (such as Cdc42). First, we will examine the role of the tinman interactor Cdc42. Based on the emerging concept of parallel functions in cardiogenesis and in maintaining heart function, we will examine other screen candidates (from aim 1) for their role in cardiac morphogenesis, similar to that of Cdc42.

Public Health Relevance

Congenital heart defects are the most common developmental anomaly and are the leading non-infectious cause of mortality in newborns, underscoring the importance of studying the underlying causes. Our goal is to elucidate the genetic basis of these diseases using the genetic model system Drosophila. Polygenic interactive genes identified in this project will directly provide new candidates for human heart disease genes

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL054732-17
Application #
8386642
Study Section
Cardiovascular Differentiation and Development Study Section (CDD)
Program Officer
Schramm, Charlene A
Project Start
1995-08-01
Project End
2015-11-30
Budget Start
2012-12-01
Budget End
2013-11-30
Support Year
17
Fiscal Year
2013
Total Cost
$464,100
Indirect Cost
$226,100
Name
Sanford-Burnham Medical Research Institute
Department
Type
DUNS #
020520466
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Hartley, Paul S; Motamedchaboki, Khatereh; Bodmer, Rolf et al. (2016) SPARC-Dependent Cardiomyopathy in Drosophila. Circ Cardiovasc Genet 9:119-29
Trujillo, Gloriana V; Nodal, Dalea H; Lovato, Candice V et al. (2016) The canonical Wingless signaling pathway is required but not sufficient for inflow tract formation in the Drosophila melanogaster heart. Dev Biol 413:16-25
Ivy, Jessica R; Drechsler, Maik; Catterson, James H et al. (2015) Klf15 Is Critical for the Development and Differentiation of Drosophila Nephrocytes. PLoS One 10:e0134620
Vogler, Georg; Bodmer, Rolf (2015) Cellular Mechanisms of Drosophila Heart Morphogenesis. J Cardiovasc Dev Dis 2:2-16
Diop, Soda Balla; Bisharat-Kernizan, Jumana; Birse, Ryan Tyge et al. (2015) PGC-1/Spargel Counteracts High-Fat-Diet-Induced Obesity and Cardiac Lipotoxicity Downstream of TOR and Brummer ATGL Lipase. Cell Rep :
Sen, Aditya; Kalvakuri, Sreehari; Bodmer, Rolf et al. (2015) Clueless, a protein required for mitochondrial function, interacts with the PINK1-Parkin complex in Drosophila. Dis Model Mech 8:577-89
Martínez-Morentin, Leticia; Martínez, Lidia; Piloto, Sarah et al. (2015) Cardiac deficiency of single cytochrome oxidase assembly factor scox induces p53-dependent apoptosis in a Drosophila cardiomyopathy model. Hum Mol Genet 24:3608-22
Hardy, Christopher M; Birse, Ryan T; Wolf, Matthew J et al. (2015) Obesity-associated cardiac dysfunction in starvation-selected Drosophila melanogaster. Am J Physiol Regul Integr Comp Physiol 309:R658-67
Ocorr, Karen; Vogler, Georg; Bodmer, Rolf (2014) Methods to assess Drosophila heart development, function and aging. Methods 68:265-72
Lim, Hui-Ying; Wang, Weidong; Chen, Jianming et al. (2014) ROS regulate cardiac function via a distinct paracrine mechanism. Cell Rep 7:35-44

Showing the most recent 10 out of 47 publications