Animal cell behavior is tightly linked to mechanical stresses produced by the environment and mechanochemistry illustrated most vividly by muscle contraction and hearing. There is an enormous amount of physiology and disease connected to forces and sensing including hemodynamics, coordinated movement, touch, cardiac arrhythmias, muscular dystrophy, edema, glaucoma, deafness, high blood pressure, etc. The cell cortex forms the interface between the environment and the cell and this project addresses the distribution of stress in the cell cortex and how it is sensed by mechanosensitive ion channels (MSCs). We will analyze how stress is shared by specific cytoskeletal proteins, the lipid bilayer, and sensed by mechanosensitive ion channels. The project has two specific aims directed at patches and whole cells and creating a basis for extrapolating from high resolution patch data to cell behavior. The patch experiments will localize different channels and cytoskeletal proteins within the patch;measure stress in cytoskeletal proteins as the patch is stressed;create patches with minimal cytoskeleton to simplify the stress distribution;measure and quantify endogenous and TREK-1 channel kinetics in terms of membrane tension;characterize the properties of microdomains within the patch using channel kinetics, patch capacitance, fluorescence imaging of labeled proteins and the stress in specific labeled cytoskeletal proteins. The whole cell experiments will use a combination of scanning conductance microscopy (SICM), whole cell patch clamp and fluorescent probes to examine the distribution of cytoskeletal proteins and channels and the stress in cytoskeletal proteins as the cell are stressed by the SICM. We will use MSCs calibrated in the patch as additional probes of bilayer stress.

Public Health Relevance

Mechanical forces in biology account for hearing, muscle contraction, blood pressure regulation and a great deal more. As expected for such ubiquitous processes, they are also involved in much pathology such as cardiac arrhythmias, high blood pressure and muscular dystrophy. This proposal analyses how stresses are distributed in molecules, membranes and cells and how that leads to signal transduction by ion channels.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL054887-17
Application #
8289481
Study Section
Special Emphasis Panel (ZRG1-MDCN-C (02))
Program Officer
Krull, Holly
Project Start
2009-09-01
Project End
2013-07-14
Budget Start
2012-06-01
Budget End
2013-07-14
Support Year
17
Fiscal Year
2012
Total Cost
$608,526
Indirect Cost
$224,598
Name
State University of New York at Buffalo
Department
Physiology
Type
Schools of Medicine
DUNS #
038633251
City
Buffalo
State
NY
Country
United States
Zip Code
14260
Sachs, Frederick (2018) Mechanical Transduction and the Dark Energy of Biology. Biophys J 114:3-9
Maneshi, Mohammad Mehdi; Maki, Bruce; Gnanasambandam, Radhakrishnan et al. (2017) Mechanical stress activates NMDA receptors in the absence of agonists. Sci Rep 7:39610
Verma, Deepika; Bajpai, Vivek K; Ye, Nannan et al. (2017) Flow induced adherens junction remodeling driven by cytoskeletal forces. Exp Cell Res 359:327-336
Gnanasambandam, Radhakrishnan; Ghatak, Chiranjib; Yasmann, Anthony et al. (2017) GsMTx4: Mechanism of Inhibiting Mechanosensitive Ion Channels. Biophys J 112:31-45
Gnanasambandam, R; Gottlieb, P A; Sachs, F (2017) The Kinetics and the Permeation Properties of Piezo Channels. Curr Top Membr 79:275-307
Zheng, Wenjun; Sachs, Frederick (2017) Investigating the structural dynamics of the PIEZO1 channel activation and inactivation by coarse-grained modeling. Proteins 85:2198-2208
Suchyna, Thomas M (2017) Piezo channels and GsMTx4: Two milestones in our understanding of excitatory mechanosensitive channels and their role in pathology. Prog Biophys Mol Biol 130:244-253
Wang, Jinli; Ma, Yina; Sachs, Frederick et al. (2016) GsMTx4-D is a cardioprotectant against myocardial infarction during ischemia and reperfusion. J Mol Cell Cardiol 98:83-94
Peng, Anthony W; Gnanasambandam, Radhakrishnan; Sachs, Frederick et al. (2016) Adaptation Independent Modulation of Auditory Hair Cell Mechanotransduction Channel Open Probability Implicates a Role for the Lipid Bilayer. J Neurosci 36:2945-56
Bae, Chilman; Suchyna, Thomas M; Ziegler, Lynn et al. (2016) Human PIEZO1 Ion Channel Functions as a Split Protein. PLoS One 11:e0151289

Showing the most recent 10 out of 51 publications