The lung is the major portal of entry for Mycobacterium tuberculosis, the cause of human tuberculosis. The lung is the site where immune responses to this bacterium are initiated, and where growth of the organism is controlled without complete eradication. Acquire immunity of T cells and macrophages controls infection in the majority of healthy individuals. The lung is not only the first site of infection, but also uniquely susceptible to M. tuberculosis. Mechanisms responsible for susceptibility of the lung to M. tuberculosis and the inability of acquired immunity to eradicate the bacteria are poorly understood. The murine model of aerogenic mycobacterial infection provides an excellent means to analyze the initiation and effector phases of acquired immunity to mycobacterial infection in the lung. This competitive renewal application for HL-55967 builds on the collaborative infrastructure developed during the last 4 years between Case Western Reserve University (CWRU) and Colorado State University (CSU) aimed at addressing immune mechanisms responsible for control of mycobacterial infection in the lung. The PI hypothesizes that mechanism(s) for the pulmonary susceptibility to M. Tuberculosis differ(s) according to stage and site of infection. Initially, M. Tuberculosis resists innate immune mechanisms in lung and uses alveolar and interstitial spaces as privileged sites. As acquired immunity develops, the ability of M. Tuberculosis to inhibit the function of antigen-processing cells becomes a dominant means to assure its survival within the lung. This hypothesis leads to the following specific aims:
Aim1 : To determine the mechanism(s) responsible for permissive mycobacterial growth in alveolar and interstitial lung macrophages and the role of chemokines and NK cells in control of mycobacterial growth during the innate phase of pulmonary M. Tuberculosis and M. bovis BCG infection.
Aim2 : To determine the ability of lung antigen presenting cells (alveolar macrophages, lung parenchymal macrophages and lung dendritic cells) to activate naive and memory T cells, and the mechanism(s) used by M. Tuberculosis to interfere with class II MHC antigen presenting cell function.
Aim 3 : To determine the ability of chemokines, CpG and cholera toxin to enhance innate and acquired immune defenses to M. bovis-BCG and M. Tuberculosis within lung.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL055967-10
Application #
6897555
Study Section
Bacteriology and Mycology Subcommittee 2 (BM)
Program Officer
Peavy, Hannah H
Project Start
1995-09-30
Project End
2006-09-14
Budget Start
2005-06-01
Budget End
2006-09-14
Support Year
10
Fiscal Year
2005
Total Cost
$383,893
Indirect Cost
Name
Case Western Reserve University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
077758407
City
Cleveland
State
OH
Country
United States
Zip Code
44106
Karim, Ahmad F; Sande, Obondo J; Tomechko, Sara E et al. (2017) Proteomics and Network Analyses Reveal Inhibition of Akt-mTOR Signaling in CD4+ T Cells by Mycobacterium tuberculosis Mannose-Capped Lipoarabinomannan. Proteomics 17:
Sande, Obondo J; Karim, Ahmad F; Li, Qing et al. (2016) Mannose-Capped Lipoarabinomannan from Mycobacterium tuberculosis Induces CD4+ T Cell Anergy via GRAIL. J Immunol 196:691-702
Mahon, Robert N; Sande, Obondo J; Rojas, Roxana E et al. (2012) Mycobacterium tuberculosis ManLAM inhibits T-cell-receptor signaling by interference with ZAP-70, Lck and LAT phosphorylation. Cell Immunol 275:98-105
Li, Qing; Ding, Xuedong; Thomas, Jeremy J et al. (2012) Rv2468c, a novel Mycobacterium tuberculosis protein that costimulates human CD4+ T cells through VLA-5. J Leukoc Biol 91:311-20
Lancioni, Christina L; Li, Qing; Thomas, Jeremy J et al. (2011) Mycobacterium tuberculosis lipoproteins directly regulate human memory CD4(+) T cell activation via Toll-like receptors 1 and 2. Infect Immun 79:663-73
Drage, Michael G; Tsai, Han-Chun; Pecora, Nicole D et al. (2010) Mycobacterium tuberculosis lipoprotein LprG (Rv1411c) binds triacylated glycolipid agonists of Toll-like receptor 2. Nat Struct Mol Biol 17:1088-95
Mahon, Robert N; Rojas, Roxana E; Fulton, Scott A et al. (2009) Mycobacterium tuberculosis cell wall glycolipids directly inhibit CD4+ T-cell activation by interfering with proximal T-cell-receptor signaling. Infect Immun 77:4574-83
Pecora, Nicole D; Fulton, Scott A; Reba, Scott M et al. (2009) Mycobacterium bovis BCG decreases MHC-II expression in vivo on murine lung macrophages and dendritic cells during aerosol infection. Cell Immunol 254:94-104
Drage, Michael G; Pecora, Nicole D; Hise, Amy G et al. (2009) TLR2 and its co-receptors determine responses of macrophages and dendritic cells to lipoproteins of Mycobacterium tuberculosis. Cell Immunol 258:29-37